I/’;\ |
“) AIDA
AN

Advanced European Infrastructures for Detectors at Accelerators

DDGA4

A Simulation Toolkit for
High Energy Physics Experiments

using Geant4 and the
DD4hep Geometry Description

M.Frank
CERN, 1211 Geneva 23, Switzerland

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

DDG4 User Manual

Abstract

Simulating the detector response is an essential tool in high energy physics to analyze the
sensitivity of an experiment to the underlying physics. Such simulation tools require a
detailed though convenient detector description as it is provided by the DD4hep toolkit.
We will present the generic simulation toolkit DDG4using the DD4hep detector description
toolkit. The toolkit implements a modular and flexible approach to simulation activities
using Geant4. User defined simulation applications using DDG4can easily be configured,
extended using specialzed action routines. The design is strongly driven by easy of use;
developers of detector descriptions and applications using it them should provide minimal
information and minimal specific code to achieve the desired result.

Document History

Document
version Date Author
1.0 19/11/2013 | Markus Frank CERN/LHCb

DDG4 User Manual I

/7

I~
- AIDA Advanced European Infrastructures for Detectors at Accelerators

Contents
(1__Introduction| 1
2_The Geant4 User Interfacel 1
3 DDG4 Implementation| 2
3.1 'The Application Core Object: Geant4Kernel| 2
3.2 The Base Class of DDG4 Actions: Geant4Actionl. 2
3.2.1 The Properties of Geant4Action Instances|. 3
8.3 Geantd Action Sequences| e e 4
8.4 Sensitive Detectorsl o Lo 6
8.4.1 Sensitive Detector Filtersl o 7
8.5 The Geant4d Physics List| 8
3.6 The Support of the Geant4d Ul: Geant4UIMessenger| 9
4 Setting up DDG4| 11
4.1 Setting up DDG4 using XML| oo oo 11
[4.1.1 Setup of the Physics Last| oo o 0. 11
[4.1.2 Setup of Global Geant4 Actions|. 12
T3 Setup of Geant4d Filters] o oo 13
4.1.4 Geantd Action Sequences| e 13
4.1.5 Setup of Geant4d Sensitive Detectors| oL 14
4.1.6 Miscellaneous Setup of Geantd Objects| 14
4.1.7 Setup of Geantd Phases| 15
4.2 Setting up DDG4 using ROOT-CINT| 16
[£3 Setting up using Python| 18

DDG4 User Manual Il

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

1 Introduction

This manual should introduce to the DDG4 framework. One goal of DDG4is to easily configure the
simulation applications capable of simulating the physics response of detector configurations as they
are used for example in high energy physics experiments. In such simulation programs the user normally
has to define to experimental setup in terms of its geometry and in terms of its active elements which
sample the detector response.

The goal of DDG4is to generalize the configuration of a simulation application to a degree, which does
not force users to write code to test a detector design. At the same time it should of course be
feasible to supply specialized user written modules which are supposed to seamlessly operate together
with standard modules supplied by the toolkit. Detector-simulation depends strongly on the use of
an underlying simulation toolkit, the most prominent candidate nowadays being Geant4 [8]. DD4hep
supports simulation activities with Geant4 providing an automatic translation mechanism between
geometry representations. The simulation response in the active elements of the detector is strongly
influenced by the technical choices and precise simulations depends on the very specific detection
techniques.

Similar to the aim of DD4hep [I], where with time a standard palette of detector components developed
by users should become part of the toolkit, DDG4also hopes to provide a standard palette of compo-
nents used to support simulation activities for detector layouts where detector designers may base the
simulation of a planned experiment on these predefined components for initial design and optimization
studies.

This is not a manual to Geant4 nor the basic infrastructure of DD4hep . It is assumed that this
knowledge is present and the typical glossary is known.

2 The Geant4 User Interface

The Geant4 simulation toolkit [8] implements a very complex machinery to simulate the energy depo-
sition of particles traversing materials. To easy its usage for the clients and to shield clients from the
complex internals when actually implementing a simulation applications for a given detector design, it
provides several user hooks as shown in Figure[Il Each of these hooks serves a well specialized purpose,
but unfortunately also leads to very specialized applications. One aim of DDG4is to formalize these user
actions so that the invocation at the appropriate time may be purely data driven.

In detail the following object-hooks allow the client to define user provided actions:

e The User Physics List allows the client to customize and define the underlying physics pro-
cess(es) which define the particle interactions inside the detector defined with the geometry
description. These interactions define the detector response in terms of energy depositions.

e The Run Action is called once at the start and end of a run. i.e. a series of generated events.
These two callbacks allow clients to define run-dependent actions such as statistics summaries
etc.

e The Primary Generator Action is called for every event. During the callback all particles are
created which form the microscopic kinematic action of the particle collision. This input may
either origin directly from an event generator program or come from file.

e The Event Action is called once at the start and the end of each event. It is typically used for a
simple analysis of the processed event. If the simulated data should be written to some persistent
medium, the call at the end of the event processing is the appropriate place.

e The Tracking Action

e The Stepping Action

e The Stacking Action

Geant4 provides all callbacks with the necessary information in the form of appropriate arguments.
Besides the callback system, Geant4 provides callbacks whenever a particle traverses a sensitive volume.
These callbacks are called - similar to event actions - once at the start and the end of the event, but

DDG4 User Manual 1

N
=AY
Ny AIDA Advanced European Infrastructures for Detectors at Accelerators

——&

G4VUserPhysicsList

G4VUserPrimaryGeneratorAction le.......... G4Event

GAUserRUNACION L. .oeiiireceeerceennd G4Run
G4RunManager G4UserEventAction S GA4Event

G4UserTrackingAction | ... | GA4Track

G4UserSteppingAction lg .. .| G4Step

G4UserStackingAction G4TouchableHistory

Figure 1: The various user hooks provided by Geant4. Not shown here is the callback system interfacing
to the active elements of the detector design.

in addition, if either the energy deposit of a particle in the sensitive volume exceeds some threshold.
The callbacks are formalized within the base class G4VSensitiveDetector.

3 DDG4 Implementation

A basic design criteria of the a DDG4simulation application was to process any user defined hook provided
by Geant4 as a series of algorithmic procedures, which could be implemented either using inheritance or
by a callback mechanism registering functions fulfilling a given signature. Such sequences are provided
for all actions mentioned in the list in Section [2] as well as for the callbacks to sensitive detectors.
The callback mechanism was introduced to allow for weak coupling between the various actions. For
example could an action performing monitoring using histograms at the event level initialize or reset
its histograms at the start/end of each run. To do so, clearly a callback at the start/end of a run would
be necessary.

In the following sections a flexible and extensible interface to hooks of Geant4 is discussed starting with
the description of the basic components Geant4Kernel and Geant4Action followed by the implementation
of the relevant specializations. The specializations exposed are sequences of such actions, which also
call registered objects. In later section the configuration and the combination of these components
forming a functional simulation application is presented.

3.1 The Application Core Object: Geant4kernel

The kernel object is the central context of a DDG4simulation application and gives all clients access to
the user hooks (see Figure . All Geant4 callback structures are exposed so that clients can easily
objects implementing the required interface or register callbacks with the correct signature.

3.2 The Base Class of DDG4 Actions: Geant4Action

The class Geant4Action is a common component interface providing the basic interface to the framework
to

e configure the component using a property mechanism

DDG4 User Manual 2

=

=\
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

GeantdContext m_generatorAction #0...1 D ——

m_runAction #0...1 T

m_eventAction #0...1 GeantdAction

m_trackAction #0...1

Geant4Kernel Geant4Action

m_stepAction #0...1 e —

m_stackingAction #0...1 GeantdAction

m_phases #0..n Geant4ActionPhase

Figure 2: The sensitive detector design.

e provide an appropriate interface to Geant4 interactivity. The interactivity included a generic
way to change and access properties from the Geant4 Ul prompt as well as executing registered
commands.

e As shown in Figure 3| the base class also provides to its sub-class a reference to the Geant4Kernel
objects through the Geant4Context.

The Geant4Action is a named entity and can be uniquely identified within a sequence attached to one
Geant4 user callback.

m_properties #0...* PropertyManager

e |
\

m_control #0...1 Geant4UIMessenger

Geant4Context m_context #1 Geant4Action

Figure 3: The design of the common base class Geant4Action.

DDG4knowns two types of actions: global actions and anonymouns actions. Global actions are accessible
externally from the Geant4Kernel instance. Global actions are also re-usable and hence may be con-
tribute to several action sequences (see the following chapters for details). Global actions are uniquely
identified by their name. Anonymous actions are known only within one sequence and normally are
not shared between sequences.

3.2.1 The Properties of Geant4Action Instances

Nearly any subclass of a Geant4Action needs a flexible configuration in order to be reused, modified
etc. The implementation of the mechanism uses a very flexible value conversion mechanism using
boost: :spirit, which support also conversions between unrelated types provided a dictionary is present.

DDG4 User Manual 3

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

Properties are supposed to be member variables of a given action object. To publish a property it
needs to be declared in the constructor as shown here:

declareProperty("OutputLevel"”, m_outputLevel = INF0);
declareProperty("Control", m_needsControl = false);

The internal setup of the Geant4Action objects then ensure that all declared properties will be set after
the object construction to the values set in the setup file.

Note: Because the values can only be set after the object was constructed, the actual values may not
be used in the constructor of any base or sub-class.

3.3 Geant4 Action Sequences
The main action sequences have a fixed name. These are

e The RunAction attached to the G4UserRunAction, implemented by the Geant4RunActionSequence
class and is called at the start and the end of every run (beamOn). Members of the Geant4RunActionSequence
are of type Geant4RunAction and receive the callbacks by overloading the two routines:

/// begin-of-run callback

virtual void begin(const G4Run* run);
/// End-of-run callback

virtual void end(const G4Run* run);

or register a callback with the signature void (T::*) (const G4Run*) either to receive begin-of-run
or end-or-calls using the methods:

/// Register begin-of-run callback. Types Q and T must be polymorph!

template <typename Q, typename T> void callAtBegin(Q* p, void (T::*f) (const G4Runx));
/// Register end-of-run callback. Types Q and T must be polymorph!

template <typename Q, typename T> void callAtEnd(Q* p, void (T::*f) (const G4Runx));

of the Geant4RunActionSequence from the Geant4Context object.

e The EventAction attached to the G4UserEventAction, implemented by the EventActionSequence
class and is called at the start and the end of every event. Members of the Geant4EventActionSequence
are of type Geant4EventAction and receive the callbacks by overloading the two routines:

/// Begin-of-event callback

virtual void begin(const G4Event* event);
/// End-of-event callback

virtual void end(const G4Event* event);

or register a callback with the signature void (T::*) (const G4Event*) either to receive begin-of-
run or end-or-calls using the methods:

/// Register begin-of-event callback

template <typename Q, typename T> void callAtBegin(Q* p, void (T::*f) (const G4Eventx*));
/// Register end-of-event callback

template <typename Q, typename T> void callAtEnd(Q* p, void (T::*f)(const G4Event*));

of the Geant4EventActionSequence from the Geant4Context object.

e The GeneratorAction attached to the G4VUserPrimaryGeneratorAction, implemented by the
Geant4GeneratorActionSequence class and is called at the start of every event and provided all
initial tracks from the Monte-Carlo generator. Members of the Geant4GeneratorActionSequence
are of type Geant4EventAction and receive the callbacks by overloading the member function:

/// Callback to generate primary particles
virtual void operator() (G4Event* event);

DDG4 User Manual 4

=

=\
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

G4UserTrackingAction ‘ Geant4UserTrackingAction Invisible to clients

m_sequence #0...1

Geant4TrackingActionSequence <>

h 4

Geant4Context m_context #1 Geant4Action

f m_actions #0...n

Geant4TrackingAction

_parent #1

Geant4TrackActionVertex Geant4TrackActionByEnergy

Figure 4: The design of the tracking action sequence. Specialized tracking action objects inherit from
the Geant4TrackingAction object and must be attached to the sequence.

or register a callback with the signature void (T::*) (G4Event*) to receive calls using the method:

/// Register primary particle generation callback.
template <typename Q, typename T> void call(Q* p, void (T::*f) (G4Eventx*));

of the Geant4GeneratorActionSequence from the Geant4Context object.

e The TrackingA ction attached to the G4UserTrackingAction, implemented by the Geant4- Tracking-
ActionSequence class and is called at the start and the end of tracking one single particle trace
through the material of the detector. Members of the Geant4TrackingActionSequence are of type
Geant4TrackingAction and receive the callbacks by overloading the member function:

/// Pre-tracking action callback
virtual void begin(const G4Track* trk);
/// Post-tracking action callback
virtual void end(const G4Track* trk);

or register a callback with the signature void (T::*)(const G4Step*, G4SteppingManager*) to
receive calls using the method:

/// Register Pre-track action callback

template <typename Q, typename T> void callAtBegin(Q* p, void (T::*f) (const G4Trackx*));
/// Register Post-track action callback

template <typename Q, typename T> void callAtEnd(Q* p, void (T::*f) (const G4Track*));

e The SteppingAction attached to the G4UserSteppingAction, implemented by the Geant4- SteppingActionSequence
class and is called for each step when tracking a particle. Members of the Geant4SteppingActionSequence
are of type Geant4SteppingAction and receive the callbacks by overloading the member function:

DDG4 User Manual 5

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

/// User stepping callback
virtual void operator() (const G4Stepx step, G4SteppingManager* mgr);

or register a callback with the signature void (T::*)(const G4Step*, G4SteppingManager*) to
receive calls using the method:

/// Register stepping action callback.
template <typename Q, typename T> void call(Q* p, void (T::*f) (const G4Step*,
G4SteppingManagerx*)) ;

e The StackingAction attached to the G4UserStackingAction, implemented by the Geant4-
StackingActionSequence class. Members of the Geant4StackingActionSequence are of type
Geant4StackingAction| and receive the callbacks by overloading the member functions:

/// New-stage callback
virtual void newStage();
/// Preparation callback
virtual void prepare();

or register a callback with the signature void (T::%) () to receive calls using the method:

/// Register begin-of-event callback. Types Q and T must be polymorph!
template <typename T> void callAtNewStage(T* p, void (T::*f)());

/// Register end-of-event callback. Types Q and T must be polymorph!
template <typename T> void callAtPrepare(T* p, void (T::*f)());

All sequence types support the method void adopt (T* member reference) to add the members. Once
adopted, the sequence takes ownership and manages the member. The design of the sequences is very
similar. Figure [4] show as an example the design of the Geant4TrackingAction.

3.4 Sensitive Detectors

Sensitive detectors are associated by the detector designers to all active materials, which would pro-
duce a signal which can be read out. In Geant4 this concept is realized by using a base class
G4VSensitiveDetector, which receives a callback at the begin and the end of the event processing
and at each step inside the active material whenever an energy deposition occurred.

The sensitive actions do not necessarily deal only the collection of energy deposits, but could also be
used to simply monitor the performance of the active element e.g. by producing histograms of the
absolute value or the spacial distribution of the depositions.

Within DDG4the concept of sensitive detectors is implemented as a configurable action sequence of type
Geant4SensDetActionSequence| calling members of the type Geant4Sensitivel as shown in Figure
The actual processing part of such a sensitive action is only called if the and of a set of required filters
of type Geant4Filter is positive (see also section ?7). No filter is also positive. Possible filters are e.g.
particle filters, which ignore the sensitive detector action if the particle is a geantino or if the energy
deposit is below a given threshold.

Objects of type Geant4Sensitive receive the callbacks by overloading the member function:

/// Method invoked at the begining of each event.

virtual void begin(G4HCofThisEvent* hce);

/// Method invoked at the end of each event.

virtual void end(G4HCofThisEvent* hce);

/// Method for generating hit(s) using the information of G4Step object.
virtual bool process(G4Step* step, G4TouchableHistory* history);

/// Method invoked if the event was aborted.

virtual void clear(G4HCofThisEvent* hce);

or register a callback with the signature void (T::*) (G4HCofThisEvent*) respectively void (T::*) (G4Step*,
GATouchableHistory#*) to receive callbacks using the methods:

DDG4 User Manual 6

http://www.cern.ch/frankm/DD4hep/doc/html/class_d_d4hep_1_1_simulation_1_1_geant4_stacking_action.html
http://www.cern.ch/frankm/DD4hep/doc/html/class_d_d4hep_1_1_simulation_1_1_geant4_sens_det_action_sequence.html
http://www.cern.ch/frankm/DD4hep/doc/html/struct_d_d4hep_1_1_simulation_1_1_geant4_sensitive.html

N
=AY
Ny AIDA Advanced European Infrastructures for Detectors at Accelerators

——&

G4VSDFilter | | G4VSensitiveDetector

P

Geant4SensDet [
Invisible to clients

sequence #0..1

Geant4SensdetActionSequence m_actions #0...n

v

Geant4Filter _’ Geant4Action

m_filters #0...n
parent #1

L O Geant4SensitiveAction |-~

—

TrackerHitCollector | | TrackerDetailedHitCollector TrackerHitMonitor

Figure 5: The sensitive detector design. The actual energy deposits are collected in user defined
subclasses of the Geant4Sensitive. Here, as an example possible actions called TrackerHitCollector,
TrackerDetailedHitCollector and TrackerHitMonitor are shown.

/// Register begin-of-event callback

template <typename T> void callAtBegin(T* p, void (T::*f) (G4HCofThisEventx*));

/// Register end-of-event callback

template <typename T> void callAtEnd(T* p, void (T::*f)(G4HCofThisEvent*));

/// Register process-hit callback

template <typename T> void callAtProcess(T* p, void (T::*f) (G4Step*, G4TouchableHistory*));
/// Register clear callback

template <typename T> void callAtClear(T* p, void (T::*f) (G4HCofThisEventx*));

3.4.1 Sensitive Detector Filters

Filters are called by Geant4 before the hit processing in the sensitive detectors start. The global filters
may be shared between many sensitive detectors. Alternatively filters may be directly attached to the
sensitive detector in question. Attributes are directly passed as properties to the filter action.

DDG4 User Manual 7

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

3.5 The Geant4 Physics List

Geant4 provides the base class G4VUserPhysicsList. Any user defined physics list must provide this
interface. DDG4 provides such an interface through the ROOT plugin mechanism using the class
G4VModularPhysicsList. The flexibility of DDG4allows for several possibilities to setup the Geant4 physics
list.

e The physics list may be configured as a sequence of type Geant4PhysicsListActionSequence| .
Members of the Geant4PhysicsListActionSequence are of type |Geant4PhysicsList| and receive
the callbacks by overloading the member functions:

/// Callback to construct the physics constructors

virtual void constructProcess(Geant4UserPhysics* interface);
/// constructParticle callback

virtual void constructParticles(Geant4UserPhysics* particle);
/// constructPhysics callback

virtual void constructPhysics(Geant4UserPhysics* physics);

or register a callback with the signature void (T::*)(Geant4UserPhysics*) to receive calls using
the method:

/// Register process construction callback t
template <typename Q, typename T> void constructProcess(Q* p, void (T::*f)(Geant4UserPhysics*));
/// Register particle construction callback
template <typename Q, typename T> void constructParticle(Q* p, void (T::*f)(Geant4UserPhysics*));

The argument of type Geant4UserPhysics provides a basic interface to the original G4VModular-
PhysicsList, which allows to register physics constructors etc.

e In most of the cases the above approach is an overkill and often even too flexible. Hence,
alternatively, the physics list may consist of a single entry of type |Geant4PhysicsList|.

The basic implementation of the Geant4PhysicsList supports the usage of various

e particle constructors , such as single particle constructors like G4Gamma or G4Proton, or whole
particle groups like G4BosonConstructor or G4IonConstrutor,

e physics process constructors , such as e.g. G4GammaConversion, G4PhotoElectricEffect or
G4ComptonScattering,

e physics constructors| combining particles and the corresponding interactions, such as
e.g. G40pticalPhysics, HadronPhysicsLHEP or G4HadronElasticPhysics and

e predefined Geant4 physics lists|, such as FTFP_BERT, CHIPS or QGSP_INCLXX. This option is triggered
by the content of the string property ”extends” of the Geant4Kernel: :physicsList() action.

These constructors are internally connected to the above callbacks to register themselves. The con-
structors are instantiated using the ROOT plugin mechanism.

The description of the above interface is only for completeness. The basic idea is, that the physics list
with its particle and physics constructors is configured entirely data driven using the setup mechanism
described in the following chapter. However, DDG4 is not limited to the data driven approach. Spe-
cialized physics lists may be supplied, but there should be no need. New physics lists could always
be composed by actually providing new physics constructors and actually publishing these using the
factory methods:

1// Framework include files

2 #include "DDG4/Factories.h"

3

4 #include "My_Very_Own_Physics_Constructor.h"

5 DECLARE_GEANT4_PHYSICS(My_Very_Own_Physics_Constructor)

where My_Very_Own_Physics_Constructor represents a sub-class of G4VPhysicsConstructor.

DDG4 User Manual 8

http://www.cern.ch/frankm/DD4hep/doc/html/class_d_d4hep_1_1_simulation_1_1_geant4_physics_list_action_sequence.html
http://www.cern.ch/frankm/DD4hep/doc/html/class_d_d4hep_1_1_simulation_1_1_geant4_physics_list_action_sequence.html
http://www.cern.ch/frankm/DD4hep/doc/html/class_d_d4hep_1_1_simulation_1_1_geant4_physics_list.html
http://www.cern.ch/frankm/DD4hep/doc/html/class_d_d4hep_1_1_simulation_1_1_geant4_user_physics.html
http://www.cern.ch/frankm/DD4hep/doc/html/class_d_d4hep_1_1_simulation_1_1_geant4_physics_list.html
http://www.cern.ch/frankm/DD4hep/doc/
http://www.cern.ch/frankm/DD4hep/doc/
http://www.cern.ch/frankm/DD4hep/doc/
http://www.cern.ch/frankm/DD4hep/doc/

=

=\
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

3.6 The Support of the Geant4 Ul: Geant4UIMessenger

The support of interactive in Geant4 is absolutely mandatory to debug detector setups in small steps.
The Geant4 toolkit did provide for this reason a machinery of Ul commands.

G4UIMessenger m_directory #0...1

A

G4UlDirectory

m_properties #1 PropertyManager

ﬁuﬂ”’#p#f_

Geant4UIMessenger

m_propertyCmd #0...*

G4UICommand

m_control #0...1

m_actionCmd #0...* G4UICommand

Geant4Action

Figure 6: The design of the Geant4UIMessenger class responsible for the interaction between the user
and the components of DDG4and Geant4.

The UI control is enabled, as soon as the property ”Control” (boolean) is set to true. Be default all
properties of the action are exported. Similar to the callback mechanism described above it is also
feasible to register any object callback invoking a method of a Geant4Action-subclass.

The following (shortened) screen dump illustrates the usage of the generic interface any Geant4Action
offers:

Idle> 1s
Command directory path : /
Sub-directories :
/control/ UI control commands.
/units/ Available units.
/process/ Process Table control commands.
/ddg4/ Control for all named Geant4 actions

Idle> cd /ddgs
Idle> 1s

Control for all named Geant4 actions

Sub-directories :
/ddg4/EventAction/ Control hierarchy for Geant4 action:EventAction
/ddg4/RunAction/ Control hierarchy for Geant4 action:RunAction
/ddg4/Gun/ Control hierarchy for Geant4 action:Gun
/ddg4/GeneratorAction/ Control hierarchy for Geant4 action:GeneratorAction
/ddg4/PhysicsList/ Control hierarchy for Geant4 action:PhysicsList

Idle> 1s Gun

Control hierarchy for Geant4 action:Gun

Sub-directories :

DDG4 User Manual 9

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

Commands
show * Show all properties of Geant4 component:Gun

particle * Property item of type std::string
pos_x * Property item of type double
pos_y * Property item of type double
pos_z * Property item of type double
Idle> Gun/show

PropertyManager: Property multiplicity = 1
PropertyManager: Property name = ’Gun’
PropertyManager: Property particle = ’e-’
PropertyManager: Property pos_x = 0
PropertyManager: Property pos_y
PropertyManager: Property pos_z

non
o O

Idle> Gun/pos_z 1.0

Geant4UIMessenger: +++ Gun> Setting new property value pos_z = 1.0.
Idle> Gun/pos_y 1.0
Geant4UIMessenger: +++ Gun> Setting new property value pos_y = 1.0.

Idle> Gun/pos_x 1.0
Geant4UIMessenger: +++ Gun> Setting new property value pos_x = 1.0.
Idle> Gun/show

PropertyManager: Property pos_x = 1
PropertyManager: Property pos_y
PropertyManager: Property pos_z

non
=

DDG4 User Manual 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

=\
©) AIDA
\ &y

Advanced European Infrastructures for Detectors at Accelerators

4 Setting

up DDG4

4.1 Setting up DDG4 using XML

A special plugin was developed to enable the configuration of DDG4using XML structures. These files
are parsed identically to the geometry setup in DD4hep the only difference is the name of the root-
element, which for DDG4is <geant4_setup>. The following code snippet shows the basic structure of a

DDG4setup file:

<geant4_setup>

<physicslist> ,5» </physicslist> <!-- Defintiion of the physics list -—>
<actions> </actions> <!-- The list of global actions -—>
<phases> </phases> <!-- The definition of the various phases -—>
<filters> </filters> <!-- The list of global filter actioms -—>
<sequences> </sequences> <!-- The list of defined sequences -—=>
<sensitive_detectors> </sensitive_detectors> <!-- The list of sensitive detectors -->
<properties> </properties> <!l-- Free format option sequences -—>

</geant4_setup>

To setup a DDG44 application any number of xml setup files may be interpreted iteratively. In the

following subsections the content of these first level sub-trees will be discussed.

4.1.1 Setup of

the Physics List

The main tag to setup a physics list is <physicslist> with the name attribute defining the instance of
the Geant4PhysicsList object. An example code snippet is shown below in Figure

<geant4_setup>

<physicslist name="Geant4PhysicsList/MyPhysics.0">

<extends name

<particles>
<construct
<construct
<construct
<construct
<construct
<construct
<construct
<construct

</particles>

<processes>
<particle n
<process

<process

</particle>
<particle n

<process name="G4MuMultipleScattering"

<process

</particle>

="QGSP_BERT"/>

name="G4Geantino"/>
name="G4ChargedGeantino" />
name="G4Electron"/>
name="G4Gamma" />
name="G4BosonConstructor"/>
name="G4LeptonConstructor"/>
name="G4MesonConstructor"/>
name="G4BaryonConstructor"/>

ame="e[+-]" cut="1*mm">
name="G4eMultipleScattering"
name="G4elonisation"

ame="mu[+—]“>

name="G4MulIonisation"

<!-- Geant4 basic Physics list -->
<!-- Particle constructors -—>
<!-- Process constructors -—>

ordAtRestDoIt="-1"
ordPostStepDolt="1"/>
ordAtRestDoIt="-1"
ordPostStepDoIt="2"/>

ordAtRestDoIt="-1"
ordPostStepDolt="1"/>
ordAtRestDoIt="-1"
ordPostStepDoIlt="2"/>

DDG4 User Manual

ordAlongSteptDoIlt="1"

ordAlongSteptDoIt="2"

ordAlongSteptDoIlt="1"

ordAlongSteptDoIt="2"

11

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

31 ...

32 </processes>

33

34 <physics> <!-- Physics constructors -=>
35 <construct name="G4EmStandardPhysics"/>

36 <construct name="HadronPhysicsQGSP"/>

37 ...

38 </physics>

39

40 </physicslist>
41 </geant4_setup>

Figure 7: XML snippet showing the configuration of a physics list.

To trigger a call to a

e particle constructors (line 7-14), use the <particles> section and define the Geant4 particle
constructor to be called by name. To trigger a call to

e physics process constructors, as shown in line 19-30, Define for each particle matching the
name pattern (regular expression!) and the default cut value for the corresponding processes.
The attributes ordXXXX correspond to the arguments of the Geant4 call
G4ProcessManager: : AddProcess (process,ordAtRestDolt, ordAlongSteptDoIt,ordPostStepDoIt); The
processes themself are created using the ROOT plugin mechanism. To trigger a call to

e physics constructors, as shown in line 34-35, use the <physics> section and

e to base all these constructs on an already existing predefined Geant4 physics list use the <extends>
tag with the attribute containing the name of the physics list as shown in line 4.

If only a predefined physics list is used, which probably already satisfies very many use cases, all these
section collapse to:

1 <geant4_setup>

2 <physicslist name="Geant4PhysicsList/MyPhysics.0">

3 <extends name="QGSP_BERT"/> <!-- Geant4 basic Physics list -->
4 </physicslist>

5 </geant4_setup>

4.1.2 Setup of Global Geant4 Actions

Global actions must be defined in the <actions> section as shown in the following snippet:

1 <geant4_setup>

2 <actions>

3 <action name="Geant4TestRunAction/RunInit">
4 <properties Property_int="12345"

5 Property_double="-5e15"

6 Property_string="Startrun: Hello_2"/>
7 </action>

8 <action name="Geant4TestEventAction/UserEvent_2"
9 Property_int="1234"

10 Property_double="5e15"

11 Property_string="Hello_2" />

12 </actions>

13 </geant4_setup>

The default properties of every Geant4Action object are:

DDG4 User Manual 12

© o0 ~NOOT A~ WN

10

12
13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

Name [string] Action name
OutputLevel [int] Flag to customize the level of printout
Control [boolean] Flag if the UI messenger should be installed.

The name attribute of an action child is a qualified name: The first part denotes the type of the plugin
(i.e. its class), the second part the name of the instance. Within one collection the instance name must
be unique. Properties of Geant4Actions are set by placing them as attributes into the <properties>
section.

4.1.3 Setup of Geant4 Filters

Filters are special actions called by Geant4Sensitives. Filters may be global or anonymous i.e. reusable
by several sensitive detector sequences as illustrated in Section The setup is analogous to the
setup of global actions:

<filters>
<filter name="GeantinoRejectFilter/GeantinoRejector"/>
<filter name="ParticleRejectFilter/OpticalPhotonRejector">
<properties particle="opticalphoton"/>
</filter>
<filter name="ParticleSelectFilter/OpticalPhotonSelector">
<properties particle="opticalphoton"/>
</filter>
<filter name="EnergyDepositMinimumCut">
<properties Cut="10*MeV"/>
</filter>
<l-- ... next global filter ... -—>
</filters>

Global filters are accessible from the Geant4Kernel object.

4.1.4 Geant4 Action Sequences

Geant4 Action Sequences by definition are Geant4Action objects. Hence, they share the setup mecha-
nism with properties etc. For the setup mechanism two different types of sequences are known to DDG4:
Action sequences and Sensitive detector sequences. Bot are declared in the sequences section:

<geant4_setup>
<sequences>
<sequence name="Geant4EventActionSequence/EventAction"> <!-- Sequence "EventAction" of type
"Geant4EventActionSequence" -->
<action name="Geant4TestEventAction/UserEvent_1"> <!-- Anonymouns action
<properties Property_int="01234" <!-- Properties go inline
Property_double="1el1l"
Property_string="’Hello_1’"/>
</action>
<action name="UserEvent_2"/> <!-- Global action defined in "actions"
<!-- Only the name is referenced here
<action name="Geant4Output2RO0T/RootOutput"> <!-- ROOT I/O action
<properties Output="simple.root"/> <!-- Qutput file property
</action>
<action name="Geant4Output2LCI0/LCIOOutput"> <!-- LCIO output action
<properties Output="simple_lcio"/> <!-- Qutput file property
</action>
</sequence>

<sequence sd="SiTrackerBarrel" type="Geant4SensDetActionSequence">

DDG4 User Manual 13

22
23
24
25
26
27
28
29
30
31
32
33

1

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

<filter name="GeantinoRejector"/>

<filter name="EnergyDepositMinimumCut"/>

<action name="Geant4SimpleTrackerAction/SiTrackerBarrelHandler"/>
</sequence>
<sequence sd="SiTrackerEndcap" type="Geant4SensDetActionSequence">

<filter name="GeantinoRejector"/>
<filter name="EnergyDepositMinimumCut"/>
<action name="Geant4SimpleTrackerAction/SiTrackerEndcapHandler"/>
</sequence>
<l-- ... next sequence ... -->
</sequences>

</geant4_setup>

Here firstly the EventAction sequence is defined with its members. Secondly a sensitve detector
sequence is defined for the subdetector SiTrackerBarrel of type Geant4SensDetActionSequence. The se-
quence uses two filters: GeantinoRejector to not generate hits from geantinos and EnergyDepositMinimumCut
to enforce a minimal energy deposit. These filters are global i.e. they may be applied by many subdetec-
tors. The setup of global filters is described in Section[d.1.3] Finally the action SiTrackerEndcapHandler
of type Geant4SimpleTrackerAction is chained, which collects the deposited energy and creates a col-
lection of hits. The Geant4SimpleTrackerAction is a template callback to illustrate the usage of sensi-
tive elements in DDG4. The resulting hit collection of these handlers by default have the same name
as the object instance name. Analogous below the sensitive detector sequence for the subdetector
SiTrackerEndcap is shown, which reuses the same filter actions, but will build its own hit collection.
Plase note:

e It was already mentioned, but once again: Event-, run-, generator-, tracking-, stepping-
and stacking actions sequences have predefined names! These names are fixed and part of the
common knowledge, they cannot be altered. Please refer to Section for the names of the
global action sequences.

e the sensitive detector sequences are matched by the attribute sd to the subdetectors created with
the DD4hep detector description package. Values must match!

e In the event that several xml files are parsed it is absolutely vital that the <actions> section is
interpreted before the sequences.

e For each XML file several <sequences> are allowed.

4.1.5 Setup of Geant4 Sensitive Detectors

<geant4_setup>
<sensitive_detectors>

<sd name="SiTrackerBarrel"
type="Geant4SensDet"
ecut="10.0*MeV"
verbose="true"
hit_aggregation="position">

</sd>

<!-- ... next sensitive detector ... ——>

</sensitive_detectors>
</geant4_setup>

4.1.6 Miscellaneous Setup of Geant4 Objects

This section is used for the flexible setup of auxiliary objects such as the electromagnetic fields used in
Geant4:

<geant4_setup>

DDG4 User Manual 14

16

18
19

© 0O ~NOO P WN -

e el el
~NOo Ok W N+ O

=\
©) AIDA
\ &y

Advanced European Infrastructures for

Detectors at Accelerators

<properties>

<attributes name="geant4_field"

id="0Q"

type="Geant4FieldSetup"
object="GlobalSolenoid"

global="true"

min_chord_step="0.01*mm"
delta_chord="0.25*mm"

delta_intersection="1e-05*mm"

delta_one_step="0.001*mm"

eps_min="5e-05%mm"
eps_max="0.001*mm"

stepper="HelixSimpleRunge"
equation="Mag_UsualEqRhs">

</attributes>

</properties>
</geant4_setup>

Important are the tags type and object, which are used to firstly define the plugin to be called and
secondly define the object from the DD4hep description to be configured for the use within Geant4.

4.1.7 Setup of Geant4 Phases

Phases are configured as shown below. However, the use is discouraged, since it is not yet clear if

there are appropriate use cases!

<phases>

<phase type="RunAction/begin">

<action name="RunInit"/>

<action name="Geant4TestRunAction/UserRunInit">

<properties Property_int="1234"
Property_double="5e15"

Property_string="’Hello_2’"/>

</action>
</phase>

<phase type="EventAction/begin">
<action name="UserEvent_2"/>

</phase>

<phase type="EventAction/end">
<action name="UserEvent_2"/>

</phase>

</phases>

DDG4 User Manual

15

=\
©) AIDA
\ &y

Advanced European Infrastructures for Detectors at Accelerators

4.2 Setting up DDG4 using ROOT-CINT

The setup of DDG4directly from the the ROOT interpreter using the AClick mechanism is very simple,
but mainly meant for purists (like me ;-)), since it is nearly equivalent to the explicit setup within a
C++ main program. The following code section shows how to do it. For explanation the code secment
is discussed below line by line.

1 #include "DDG4/Geant4Config.h"

2 #include "DDG4/Geant4TestActions.h"
3#include "DDG4/Geant4TrackHandler.h"
4 #include <iostream>

5

6 using namespace std;

7 using namespace DD4hep;

8 using namespace DD4hep::Simulation;

9 using namespace DD4hep::Simulation::Test;
10 using namespace DD4hep::Simulation::Setup;

11

12 #if defined(__MAKECINT__)

13 #pragma link C++ class Geant4RunActionSequence;

14 #pragma link C++ class Geant4EventActionSequence;

15 #pragma link C++ class Geant4SteppingActionSequence;
16 #pragma link C++ class Geant4StackingActionSequence;
17 #pragma link C++ class Geant4GeneratorActionSequence;
18 #pragma link C++ class Geant4Action;

19 #pragma link C++ class Geant4Kernel;

20 #endif

21

22 SensitiveSeq: :handled_type* setupDetector(Kernel& kernel, const std::string& name)
23 SensitiveSeq sd = SensitiveSeq(kernel,name);

24 Sensitive sens = Sensitive(kernel,"Geant4TestSensitive/"+name+"Handler" , name);
25 sd->adopt(sens);

26 sens = Sensitive(kernel,"Geant4TestSensitive/"+name+"Monitor" ,name);

27 sd->adopt(sens);

28 return sd;

20}

30

31void exampleAClick() {

32 Geant4Kernel& kernel = Geant4Kernel::instance(LCDD::getInstance());

33 kernel.loadGeometry("file:../DD4hep.trunk/DDExamples/CLICSiD/compact/compact.xml") ;
34 kernel.loadXML("DDG4_field.xml");

35

36 GenAction gun(kernel,"Geant4ParticleGun/Gun");

37 gun["energy"] = 0.5%GeV; // Set properties

38 gun["particle"] = "e-";

39 gun["multiplicity"] = 1;

40 kernel.generatorAction().adopt(gun);

41

42 Action run_init(kernel,"Geant4TestRunAction/RunInit");

43 run_init["Property_int"] = 12345;

44 kernel.runAction().callAtBegin (run_init.get(),&Geant4TestRunAction: :begin);

45 kernel.eventAction().callAtBegin(run_init.get(),&Geant4TestRunAction: :beginEvent);
46 kernel.eventAction().callAtEnd (run_init.get(),&Geant4TestRunAction::endEvent);
47

48 Action evt_1(kernel,"Geant4TestEventAction/UserEvent_1");

49 evt_1["Property_int"] = 12345; // Set properties

50 evt_1["Property_string"] = "Events";

51 kernel.eventAction() .adopt(evt_1);

DDG4 User Manual 16

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70}

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

EventAction evt_2(kernel,"Geant4TestEventAction/UserEvent_2");
kernel.eventAction() .adopt(evt_2);

kernel.runAction().callAtBegin(evt_2.get(),&Geant4TestEventAction: :begin);
kernel.runAction() .callAtEnd (evt_2.get(),&Geant4TestEventAction::end);

setupDetector (kernel, "SiVertexBarrel") ;
setupDetector (kernel, "SiVertexEndcap") ;
/] ...
setupDetector (kernel,"LumiCal") ;
setupDetector (kernel, "BeamCal") ;

more subdetectors here

kernel.configure();

kernel.initialize();

kernel.run();

std::cout << "Successfully executed application " << std::endl;
kernel.terminate();

Line

. 6-10
13-19

22-29

31
32
33
34

36-40

42-46

48-51

53-54

56-57

59-63

65-66
69

The header file Geant4Config.h contains a set of wrapper classes to easy the creation of objects
using the plugin mechanism and setting properties to Geant4Action objects. These helpers
and the corresponding functionality are not included in the wrapped classes themselves to not
clutter the code with stuff only used for the setup. All contained objects are in the namespace
DD4hep: :Simulation: :Setup

Save yourself specifying all the namespaces objects are in....

CINT processing pragmas. Classes defined here will be available at the ROOT prompt after

this AClick is loaded.
Sampler to fill the sensitive detector sequences for each subdetector with two entries: a handler

and a monitor action. Please note, that this here is example code and in real life specialized
actions will have to be provided for each subdetector.
Let’s go for it. here the entry point starts....

Create the Geant4Kernel object.
Load the geometry into DD4hep .

Redefine the setup of the sensitive detectors.

Create the generator action of type Geant4ParticleGun with name Gun, set non-default properties
and activate the configured object by attaching it to the Geant4Kernel.

Create a user defined begin-of-run action callback, set the properties and attach it to the begin
of run calls. To collect statistics extra member functions are registered to be called at the
beginning and the end of each event.

Create a user defined event action routine, set its properties and attach it to the event action
sequence.

Create a second event action and register it to the event action sequence. This action will be
called after the previously created action.

For this event action we want to receive callbacks at start- and end-of-run to produce additional
summary output.

Call the sampler routine to attach test actions to the subdetectors defined.

Configure, initialize and run the Geant4 application. Most of the Geant4 actions will only be
created here and the action sequences created before will be attached now.

Terminate the Geant4 application and exit.

DDG4 User Manual 17

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

CINT currently cannot handle pointers to member functions B Hence the above AClick only works in
compiled mode. To invoke the compilation the following action is necessary from the ROOT prompt:

1$> root.exe

D skokskokokokok ok ook ok ok o ok ok oK K ok ok ok K sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok K
3 % *
4 * WELCOME to ROOT *
5 x *
6 * Version 5.34/10 29 August 2013 *
7 * *
8 * You are welcome to visit our Web site *
9 x http://root.cern.ch *
10 = *
11 skskokokokskskokokokok ok ok ok ok ok o ok ok ok ok o ok ok ok ok ok sk ok ok ok ok ook ok ok ok ok ok ok o
12

13 RO0T 5.34/10 (heads/v5-34-00-patches@v5-34-10-5-gOe8bac8, Sep 04 2013, 11:52:19 on linux)

14

15 CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010
16 Type 7 for help. Commands must be C++ statements.

17 Enclose multiple statements between { .

18 root [0] .X initAClick.C

19 Setting up the CINT include pathes and the link statements.

20

21 root [1] .L ../DD4hep.trunk/DDG4/examples/exampleAClick.C+

22 Info in <TUnixSystem::ACLiC>: creating shared libraryexampleAClick_C.so
23 some Cint warnings concerning member function pointers

24

25 root [2] exampleAClick()

26 and it starts ...

The above scripts are present in the DDG4/example directory located in svn. The intialization script

initAClick.C may require customization to cope with the installation pathes.

4.3 Setting up DDG4 using Python

Given the reflection interface of ROOT, the setup of the simulation interface using DD4hep is of course
also possible using the python interpreted language. In the following code example the setup of Geant4

using the ClicSid example is shown using python ﬂ

1#

2#

3 import DDG4

4 from SystemOfUnits import *
5#

6#

7 nun

8

9 DD4hep example setup using the python configuration
10

11 Qauthor M.Frank

12 @version 1.0

13

14 nnn

15def run():

16 kernel = DDG4.Kernel()

I This may change in the future once ROOT uses clang and cling as the interpreting engine.
2For comparison, the same example was used to illustrate the setup using XML files.

DDG4 User Manual

18

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

kernel.loadGeometry("file:../DD4hep.trunk/DDExamples/CLICSiD/compact/compact.xml")

kernel.loadXML("DDG4_field.xml")

lcdd = kernel.lcdd()
print ’+++ List of sensitive detectors:’
for i in lcdd.detectors():
o = DDG4.DetElement (i.second)
sd = lcdd.sensitiveDetector (o.name())
if sd.isValid():
print ’+++ Y-32s type:%s’%(o.name(), sd.type(),)

Configure Run actions

runl = DDG4.RunAction(kernel,’Geant4TestRunAction/RunInit’)
runl.Property_int = 12345

runl.Property_double = -5elbxkeV

runl.Property_string ’Startrun: Hello_2’

print runl.Property_string, runl.Property_double, runl.Property_int
runl.enableUI()

kernel.registerGlobalAction(runl)

kernel.runAction() .add(runl)

Configure Event actions

evt2 = DDG4.EventAction(kernel,’Geant4TestEventAction/UserEvent_2°)
evt2.Property_int 123454321

evt2.Property_double = 5e15%GeV

evt2.Property_string = ’Hello_2 from the python setup’
evt2.enableUI()

kernel.registerGlobalAction(evt2)

evtl = DDG4.EventAction(kernel,’Geant4TestEventAction/UserEvent_1’)
evtl.Property_int=01234

evtl.Property_double=1lell

evtl.Property_string=’Hello_1’

evtl.enableUI()

kernel.eventAction() .add(evtl)
kernel.eventAction() .add(evt2)

Configure I/0

evt_root = DDG4.EventAction(kernel,’Geant40utput2R00T/RootOutput’)
evt_root.Control = True

evt_root.Output = "simple.root"

evt_root.enableUI()

evt_lcio = DDG4.EventAction(kernel,’Geant40utput2LCIO/LcioQutput’)
evt_lcio.Output = "simple_lcio"
evt_lcio.enableUI()

kernel.eventAction() .add(evt_root)
kernel.eventAction() .add(evt_1lcio)

Setup particle gun

gun = DDG4.GeneratorAction(kernel,"Geant4ParticleGun/Gun")
gun.energy = 0.5%GeV

gun.particle = ’e-’

gun.multiplicity = 1

gun.enableUI()

kernel.generatorAction() .add(gun)

DDG4 User Manual

19

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

=\
[=PAY|
\ &y

AIDA Advanced European Infrastructures for Detectors at Accelerators

Setup global filters fur use in sensntive detectors

f1 =
f2 =

DDG4.Filter (kernel, ’GeantinoRejectFilter/GeantinoRejector’)
DDG4.Filter (kernel, ’ParticleRejectFilter/OpticalPhotonRejector’)

f2.particle = ’opticalphoton’

3 =

DDG4.Filter (kernel, ’ParticleSelectFilter/OpticalPhotonSelector’)

f3.particle = ’opticalphoton’

f4 =

DDG4.Filter (kernel, ’EnergyDepositMinimumCut’)

f4.Cut = 10*MeV

f4.enableUI()
kernel.registerGlobalFilter (£1)
kernel.registerGlobalFilter (£2)
kernel.registerGlobalFilter (£3)
kernel.registerGlobalFilter (£4)

First the tracking detectors

seq
act

seq.
seq.
seq.
act.

seq
act

seq.
seq.
seq.

seq
act

seq.
seq.
seq.

seq
act

seq.

seq
act

seq.

= DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/SiVertexBarrel’)

= DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiVertexBarrelHandler’,’SiVertexBarrel’)
add(act)

add(£1)

add (£4)

add(f1)

= DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/SiVertexEndcap’)

= DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiVertexEndcapHandler’,’SiVertexEndcap’)
add(act)

add(£1)

add (£4)

= DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/SiTrackerBarrel’)

= DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiTrackerBarrelHandler’,’SiTrackerBarrel’)
add (act)

add (£1)

add(£4)

= DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/SiTrackerEndcap’)
= DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiTrackerEndcapHandler’,’SiTrackerEndcap’)
add(act)

= DDG4.SensitiveSequence (kernel, ’Geant4SensDetActionSequence/SiTrackerForward’)
= DDG4.SensitiveAction(kernel,’Geant4SimpleTrackerAction/SiTrackerForwardHandler’,’SiTrackerForward’)
add (act)

Now the calorimeters

seq
act

seq.

seq
act

seq.

seq
act

act.
seq.

act

= DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/EcalBarrel’)
= DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/EcalBarrelHandler’, ’EcalBarrel’)
add (act)

= DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/EcalEndcap’)
= DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/EcalEndCapHandler’, ’EcalEndcap’)
add(act)

= DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/HcalBarrel’)

= DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/HcalBarrelHandler’, ’HcalBarrel’)
adoptFilter (kernel.globalFilter (’OpticalPhotonRejector’))

add(act)

= DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/HcalOpticalBarrelHandler’, ’HcalBarrel’)

DDG4 User Manual 20

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

133 act.adoptFilter (kernel.globalFilter (’OpticalPhotonSelector’))

134 seq.add(act)

135

136 seq = DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/HcalEndcap’)

137 act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/HcalEndcapHandler’, ’HcalEndcap’)
138 seq.add(act)

139

140 seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/HcalPlug’)

141 act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/HcalPlugHandler’, ’HcalPlug’)
142 seq.add(act)

143

144 seq = DDG4.SensitiveSequence (kernel,’Geant4SensDetActionSequence/MuonBarrel’)

145 act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/MuonBarrelHandler’, ’MuonBarrel’)
146 seq.add(act)

147

148 seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/MuonEndcap’)

149 act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/MuonEndcapHandler’,’MuonEndcap’)
150 seq.add(act)

151

152 seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/LumiCal’)

153 act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/LumiCalHandler’,’LumiCal’)
154 seq.add(act)

155

156 seq = DDG4.SensitiveSequence(kernel,’Geant4SensDetActionSequence/BeamCal’)

157 act = DDG4.SensitiveAction(kernel,’Geant4SimpleCalorimeterAction/BeamCalHandler’,’BeamCal’)
158 seq.add(act)

159

160 # Now build the physics list:

161 phys = kernel.physicsList()

162 phys.extends = ’FTFP_BERT’

163 #phys.transportation = True

164 phys.decays = True

165 phys.enableUI()

166

167 ph = DDG4.PhysicsList(kernel,’Geant4PhysicsList/Myphysics’)

168 ph.addParticleConstructor (’G4BosonConstructor’)

169 ph.addParticleConstructor (’G4LeptonConstructor’)

170 ph.addParticleProcess(’e[+-]’,’G4eMultipleScattering’,-1,1,1)

171 ph.addPhysicsConstructor(’G40pticalPhysics’)

172 ph.enableUI()

173 phys.add(ph)

174

175 phys.dump()

176

177 kernel.configure()

178 kernel.initialize()

179 kernel.run()

180 kernel.terminate()

181

182 if __name__ == "__main__":
183 run(Q)

184

DDG4 User Manual 21

O
&) zs zs
NS ID Advanced European Infrastructures for Detectors at Accelerators

References

[1]
2]

[3]

DD4Hep web page, http://aidasoft.web.cern.ch/DD4hep.

LHCb Collaboration, "LHCb, the Large Hadron Collider beauty experiment, reoptimised detector
design and performance”, CERN/LHCC 2003-030

S. Ponce et al., ”Detector Description Framework in LHCb”, International Conference on Comput-
ing in High Energy and Nuclear Physics (CHEP 2003), La Jolla, CA, 2003, proceedings.

The ILD Concept Group, ” The International Large Detector: Letter of Intent”,
ISBN 978-3-935702-42-3, 2009.

H. Aihara, P. Burrows, M. Oreglia (Editors), ”SiD Letter of Intent”, arXiv:0911.0006, 2009.

R.Brun, A.Gheata, M.Gheata, ”The ROOT geometry package”,
Nuclear Instruments and Methods A 502 (2003) 676-680.

R.Brun et al., "Root - An object oriented data analysis framework”,
Nuclear Instruments and Methods A 389 (1997) 8186.

S. Agostinelli et al., ”Geant4 - A Simulation Toolkit”,
Nuclear Instruments and Methods A 506 (2003) 250-303.

T.Johnson et al., "LCGO - geometry description for ILC detectors”, International Conference
on Computing in High Energy and Nuclear Physics (CHEP 2007), Victoria, BC, Canada, 2012,
Proceedings.

[10] N.Grafet al., ”lcsim: An integrated detector simulation, reconstruction and analysis environment”,

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012), New
York, 2012, Proceedings.

[11] R. Chytracek et al., ” Geometry Description Markup Language for Physics Simulation and Analysis

Applications”, IEEE Trans. Nucl. Sci., Vol. 53, Issue: 5, Part 2, 2892-2896, http://gdml.web.cern.ch.

[12] C.Grefe et al., ”The DDSegmentation package”, Non existing documentation to be written.

DDG4 User Manual 22

	Introduction
	The Geant4 User Interface
	DDG4 Implementation
	The Application Core Object: Geant4Kernel
	The Base Class of DDG4 Actions: Geant4Action
	The Properties of Geant4Action Instances

	Geant4 Action Sequences
	Sensitive Detectors
	Sensitive Detector Filters

	The Geant4 Physics List
	The Support of the Geant4 UI: Geant4UIMessenger

	Setting up DDG4
	Setting up DDG4 using XML
	Setup of the Physics List
	Setup of Global Geant4 Actions
	Setup of Geant4 Filters
	Geant4 Action Sequences
	Setup of Geant4 Sensitive Detectors
	Miscellaneous Setup of Geant4 Objects
	Setup of Geant4 Phases

	Setting up DDG4 using ROOT-CINT
	Setting up DDG4 using Python

