// $Id$ //==================================================================== // AIDA Detector description implementation for LCD //-------------------------------------------------------------------- // // Author : M.Frank // //==================================================================== #include "DD4hep/LCDD.h" #include "DD4hep/Plugins.h" #include "DD4hep/Volumes.h" #include "DD4hep/Printout.h" #include "DDG4/Geant4Field.h" #include "DDG4/Geant4Converter.h" #include "DDG4/Factories.h" #include "DDG4/Geant4SensitiveDetector.h" // ROOT includes #include "TROOT.h" #include "TColor.h" #include "TGeoNode.h" #include "TGeoShape.h" #include "TGeoCone.h" #include "TGeoPcon.h" #include "TGeoPgon.h" #include "TGeoSphere.h" #include "TGeoTorus.h" #include "TGeoTube.h" #include "TGeoTrd1.h" #include "TGeoTrd2.h" #include "TGeoArb8.h" #include "TGeoMatrix.h" #include "TGeoBoolNode.h" #include "TGeoParaboloid.h" #include "TGeoCompositeShape.h" #include "TGeoShapeAssembly.h" #include "TClass.h" #include "TMath.h" #include "G4VSensitiveDetector.hh" #include "G4VisAttributes.hh" #include "G4ProductionCuts.hh" #include "G4VUserRegionInformation.hh" // Geant4 include files #include "G4Element.hh" #include "G4SDManager.hh" #include "G4Assembly.hh" #include "G4Box.hh" #include "G4Trd.hh" #include "G4Tubs.hh" #include "G4Cons.hh" #include "G4Torus.hh" #include "G4Sphere.hh" #include "G4Polycone.hh" #include "G4Polyhedra.hh" #include "G4UnionSolid.hh" #include "G4Paraboloid.hh" #include "G4SubtractionSolid.hh" #include "G4IntersectionSolid.hh" #include "G4Region.hh" #include "G4UserLimits.hh" #include "G4VSensitiveDetector.hh" #include "G4LogicalVolume.hh" #include "G4Material.hh" #include "G4Element.hh" #include "G4Isotope.hh" #include "G4Transform3D.hh" #include "G4ThreeVector.hh" #include "G4PVPlacement.hh" #include "G4ElectroMagneticField.hh" #include "G4FieldManager.hh" #include "G4ReflectionFactory.hh" #include <iostream> #include <iomanip> #include <sstream> using namespace DD4hep::Simulation; using namespace DD4hep::Geometry; using namespace DD4hep; using namespace std; #define private public #include "G4AssemblyVolume.hh" #undef private struct Geant4AssemblyVolume : public G4AssemblyVolume { Geant4AssemblyVolume() {} size_t placeVolume(G4LogicalVolume* pPlacedVolume, G4Transform3D& transformation) { size_t id = fTriplets.size(); this->AddPlacedVolume(pPlacedVolume,transformation); return id; } void imprint( std::vector<G4VPhysicalVolume*>& nodes, G4LogicalVolume* pMotherLV, G4Transform3D& transformation, G4int copyNumBase, G4bool surfCheck ); }; void Geant4AssemblyVolume::imprint( std::vector<G4VPhysicalVolume*>& nodes, G4LogicalVolume* pMotherLV, G4Transform3D& transformation, G4int copyNumBase, G4bool surfCheck ) { G4AssemblyVolume* pAssembly = this; unsigned int numberOfDaughters; if( copyNumBase == 0 ) { numberOfDaughters = pMotherLV->GetNoDaughters(); } else { numberOfDaughters = copyNumBase; } // We start from the first available index numberOfDaughters++; ImprintsCountPlus(); std::vector<G4AssemblyTriplet> triplets = pAssembly->fTriplets; for( unsigned int i = 0; i < triplets.size(); i++ ) { G4Transform3D Ta( *(triplets[i].GetRotation()), triplets[i].GetTranslation() ); if ( triplets[i].IsReflection() ) { Ta = Ta * G4ReflectZ3D(); } G4Transform3D Tfinal = transformation * Ta; if ( triplets[i].GetVolume() ) { // Generate the unique name for the next PV instance // The name has format: // // av_WWW_impr_XXX_YYY_ZZZ // where the fields mean: // WWW - assembly volume instance number // XXX - assembly volume imprint number // YYY - the name of a log. volume we want to make a placement of // ZZZ - the log. volume index inside the assembly volume // std::stringstream pvName; pvName << "av_" << GetAssemblyID() << "_impr_" << GetImprintsCount() << "_" << triplets[i].GetVolume()->GetName().c_str() << "_pv_" << i << std::ends; // Generate a new physical volume instance inside a mother // (as we allow 3D transformation use G4ReflectionFactory to // take into account eventual reflection) // G4PhysicalVolumesPair pvPlaced = G4ReflectionFactory::Instance()->Place( Tfinal, pvName.str().c_str(), triplets[i].GetVolume(), pMotherLV, false, numberOfDaughters + i, surfCheck ); // Register the physical volume created by us so we can delete it later // fPVStore.push_back( pvPlaced.first ); nodes.push_back(pvPlaced.first); if ( pvPlaced.second ) { // Supported by G4, but not by TGeo! fPVStore.push_back( pvPlaced.second ); G4Exception("G4AssemblyVolume::MakeImprint(..)", "GeomVol0003", FatalException, "Fancy construct popping new mother from the stack!"); } } else if ( triplets[i].GetAssembly() ) { // Place volumes in this assembly with composed transformation G4Exception("G4AssemblyVolume::MakeImprint(..)", "GeomVol0003", FatalException, "Assemblies within assembliesare not supported."); } else { G4Exception("G4AssemblyVolume::MakeImprint(..)", "GeomVol0003", FatalException, "Triplet has no volume and no assembly"); } } } namespace { static TGeoNode* s_topPtr; static string indent = ""; struct MyTransform3D : public G4Transform3D { MyTransform3D(double XX, double XY, double XZ, double DX, double YX, double YY, double YZ, double DY, double ZX, double ZY, double ZZ, double DZ) : G4Transform3D(XX,XY,XZ,DX,YX,YY,YZ,DY,ZX,ZY,ZZ,DZ) {} }; void handleName(const TGeoNode* n) { TGeoVolume* v = n->GetVolume(); TGeoMedium* m = v->GetMedium(); TGeoShape* s = v->GetShape(); string nam; printout(DEBUG,"G4","TGeoNode:'%s' Vol:'%s' Shape:'%s' Medium:'%s'", n->GetName(),v->GetName(),s->GetName(),m->GetName()); } class G4UserRegionInformation : public G4VUserRegionInformation { public: Region region; double threshold; bool storeSecondaries; G4UserRegionInformation() : threshold(0.0), storeSecondaries(false) {} virtual ~G4UserRegionInformation() {} virtual void Print() const { if ( region.isValid() ) printout(DEBUG,"Region","Name:%s",region.name()); } }; } /// Initializing Constructor Geant4Converter::Geant4Converter( LCDD& lcdd ) : Geant4Mapping(lcdd), m_checkOverlaps(true) { this->Geant4Mapping::init(); } /// Standard destructor Geant4Converter::~Geant4Converter() { } /// Dump element in GDML format to output stream void* Geant4Converter::handleElement(const string& name, const TGeoElement* element) const { G4Element* g4e = data().g4Elements[element]; if ( !g4e ) { g4e = G4Element::GetElement(name,false); if ( !g4e ) { if ( element->GetNisotopes() > 1 ) { g4e = new G4Element(name,element->GetTitle(),element->GetNisotopes()); for(int i=0, n=element->GetNisotopes(); i<n; ++i) { TGeoIsotope* iso = element->GetIsotope(i); G4Isotope* g4iso = G4Isotope::GetIsotope(iso->GetName(),false); if ( !g4iso ) { g4iso = new G4Isotope(iso->GetName(),iso->GetZ(),iso->GetN(),iso->GetA()); } g4e->AddIsotope(g4iso,element->GetRelativeAbundance(i)); } } else { g4e = new G4Element(element->GetTitle(),name,element->Z(),element->A()*(g/mole)); } stringstream str; str << (*g4e); printout(DEBUG,"Geant4Converter","++ Created G4 %s",str.str().c_str()); } data().g4Elements[element] = g4e; } return g4e; } /// Dump material in GDML format to output stream void* Geant4Converter::handleMaterial(const string& name, const TGeoMedium* medium) const { G4Material* mat = data().g4Materials[medium]; if ( !mat ) { mat = G4Material::GetMaterial(name,false); if ( !mat ) { TGeoMaterial* m = medium->GetMaterial(); G4State state = kStateUndefined; double density = m->GetDensity()*(gram/cm3); if ( density < 1e-25 ) density = 1e-25; switch(m->GetState()) { case TGeoMaterial::kMatStateSolid: state = kStateSolid; break; case TGeoMaterial::kMatStateLiquid: state = kStateLiquid; break; case TGeoMaterial::kMatStateGas: state = kStateGas; break; default: case TGeoMaterial::kMatStateUndefined: state = kStateUndefined; break; } if ( m->IsMixture() ) { double A_total = 0.0; TGeoMixture* mix = (TGeoMixture*)m; int nElements = mix->GetNelements(); mat = new G4Material(name,density,nElements, state, m->GetTemperature(), m->GetPressure()); for(int i=0; i<nElements; ++i) A_total += (mix->GetAmixt())[i]; for(int i=0; i<nElements; ++i) { TGeoElement* e = mix->GetElement(i); G4Element* g4e = (G4Element*)handleElement(e->GetName(),e); if ( !g4e ) { printout(ERROR,"Material","Missing component %s for material %s.", e->GetName(), mix->GetName()); } mat->AddElement(g4e,(mix->GetAmixt())[i]/A_total); } } else { mat = new G4Material(name,m->GetZ(),m->GetA(),density,state, m->GetTemperature(),m->GetPressure()); } stringstream str; str << (*mat); printout(DEBUG,"Geant4Converter","++ Created G4 %s",str.str().c_str()); } data().g4Materials[medium] = mat; } return mat; } /// Dump solid in GDML format to output stream void* Geant4Converter::handleSolid(const string& name, const TGeoShape* shape) const { G4VSolid* solid = 0; if ( shape ) { if ( 0 != (solid=data().g4Solids[shape]) ) { return solid; } else if ( shape->IsA() == TGeoShapeAssembly::Class() ) { solid = (G4VSolid*)new G4Assembly(); } else if ( shape->IsA() == TGeoBBox::Class() ) { const TGeoBBox* s = (const TGeoBBox*)shape; solid = new G4Box(name,s->GetDX()*CM_2_MM,s->GetDY()*CM_2_MM,s->GetDZ()*CM_2_MM); } else if ( shape->IsA() == TGeoTube::Class() ) { const TGeoTube* s = (const TGeoTube*)shape; solid = new G4Tubs(name,s->GetRmin()*CM_2_MM,s->GetRmax()*CM_2_MM,s->GetDz()*CM_2_MM,0,2.*M_PI); } else if ( shape->IsA() == TGeoTubeSeg::Class() ) { const TGeoTubeSeg* s = (const TGeoTubeSeg*)shape; solid = new G4Tubs(name,s->GetRmin()*CM_2_MM,s->GetRmax()*CM_2_MM,s->GetDz()*CM_2_MM,s->GetPhi1()*DEGREE_2_RAD,s->GetPhi2()*DEGREE_2_RAD); } else if ( shape->IsA() == TGeoTrd1::Class() ) { const TGeoTrd1* s = (const TGeoTrd1*)shape; solid = new G4Trd(name,s->GetDx1()*CM_2_MM,s->GetDx2()*CM_2_MM,s->GetDy()*CM_2_MM,s->GetDy()*CM_2_MM,s->GetDz()*CM_2_MM); } else if ( shape->IsA() == TGeoTrd2::Class() ) { const TGeoTrd2* s = (const TGeoTrd2*)shape; solid = new G4Trd(name,s->GetDx1()*CM_2_MM,s->GetDx2()*CM_2_MM,s->GetDy1()*CM_2_MM,s->GetDy2()*CM_2_MM,s->GetDz()*CM_2_MM); } else if ( shape->IsA() == TGeoPgon::Class() ) { const TGeoPgon* s = (const TGeoPgon*)shape; double phi_start = s->GetPhi1()*DEGREE_2_RAD; double phi_total = (s->GetDphi()+s->GetPhi1())*DEGREE_2_RAD; vector<double> rmin, rmax, z; for( Int_t i=0; i<s->GetNz(); ++i ) { rmin.push_back(s->GetRmin(i)*CM_2_MM); rmax.push_back(s->GetRmax(i)*CM_2_MM); z.push_back(s->GetZ(i)*CM_2_MM); } solid = new G4Polyhedra(name,phi_start,phi_total,s->GetNedges(),s->GetNz(),&z[0],&rmin[0],&rmax[0]); } else if ( shape->IsA() == TGeoPcon::Class() ) { const TGeoPcon* s = (const TGeoPcon*)shape; double phi_start = s->GetPhi1()*DEGREE_2_RAD; double phi_total = (s->GetDphi()+s->GetPhi1())*DEGREE_2_RAD; vector<double> rmin, rmax, z; for( Int_t i=0; i<s->GetNz(); ++i ) { rmin.push_back(s->GetRmin(i)*CM_2_MM); rmax.push_back(s->GetRmax(i)*CM_2_MM); z.push_back(s->GetZ(i)*CM_2_MM); } solid = new G4Polycone(name,phi_start,phi_total,s->GetNz(),&z[0],&rmin[0],&rmax[0]); } else if ( shape->IsA() == TGeoConeSeg::Class() ) { const TGeoConeSeg* s = (const TGeoConeSeg*)shape; solid = new G4Cons(name, s->GetRmin1()*CM_2_MM, s->GetRmax1()*CM_2_MM, s->GetRmin2()*CM_2_MM, s->GetRmax2()*CM_2_MM, s->GetDz()*CM_2_MM, s->GetPhi1()*DEGREE_2_RAD, s->GetPhi2()*DEGREE_2_RAD); } else if ( shape->IsA() == TGeoParaboloid::Class() ) { const TGeoParaboloid* s = (const TGeoParaboloid*)shape; solid = new G4Paraboloid(name,s->GetDz()*CM_2_MM,s->GetRlo()*CM_2_MM,s->GetRhi()*CM_2_MM); } else if ( shape->IsA() == TGeoSphere::Class() ) { const TGeoSphere* s = (const TGeoSphere*)shape; solid = new G4Sphere(name,s->GetRmin()*CM_2_MM,s->GetRmax()*CM_2_MM, s->GetPhi1()*DEGREE_2_RAD,s->GetPhi2()*DEGREE_2_RAD, s->GetTheta1()*DEGREE_2_RAD,s->GetTheta2()*DEGREE_2_RAD); } else if ( shape->IsA() == TGeoTorus::Class() ) { const TGeoTorus* s = (const TGeoTorus*)shape; solid = new G4Torus(name,s->GetRmin()*CM_2_MM,s->GetRmax()*CM_2_MM, s->GetR()*CM_2_MM, s->GetPhi1()*DEGREE_2_RAD,s->GetDphi()*DEGREE_2_RAD); } else if ( shape->IsA() == TGeoCompositeShape::Class() ) { const TGeoCompositeShape* s = (const TGeoCompositeShape*)shape; const TGeoBoolNode* boolean = s->GetBoolNode(); TGeoBoolNode::EGeoBoolType oper = boolean->GetBooleanOperator(); TGeoMatrix* m = boolean->GetRightMatrix(); G4VSolid* left = (G4VSolid*)handleSolid(name+"_left", boolean->GetLeftShape()); G4VSolid* right = (G4VSolid*)handleSolid(name+"_right",boolean->GetRightShape()); const Double_t *t = m->GetTranslation(); const Double_t *r = m->GetRotationMatrix(); if ( !left ) { throw runtime_error("G4Converter: No left Geant4 Solid present for composite shape:"+name); } if ( !right ) { throw runtime_error("G4Converter: No right Geant4 Solid present for composite shape:"+name); } if ( m->IsRotation() ) { MyTransform3D transform(r[0],r[1],r[2],t[0]*CM_2_MM, r[3],r[4],r[5],t[1]*CM_2_MM, r[6],r[7],r[8],t[2]*CM_2_MM); if ( oper == TGeoBoolNode::kGeoSubtraction ) solid = new G4SubtractionSolid(name,left,right,transform); else if ( oper == TGeoBoolNode::kGeoUnion ) solid = new G4UnionSolid(name,left,right,transform); else if ( oper == TGeoBoolNode::kGeoIntersection ) solid = new G4IntersectionSolid(name,left,right,transform); } else { G4ThreeVector transform(t[0]*CM_2_MM,t[1]*CM_2_MM,t[2]*CM_2_MM); if ( oper == TGeoBoolNode::kGeoSubtraction ) solid = new G4SubtractionSolid(name,left,right,0,transform); else if ( oper == TGeoBoolNode::kGeoUnion ) solid = new G4UnionSolid(name,left,right,0,transform); else if ( oper == TGeoBoolNode::kGeoIntersection ) solid = new G4IntersectionSolid(name,left,right,0,transform); } } if ( !solid ) { string err = "Failed to handle unknown solid shape:" + name + " of type " + string(shape->IsA()->GetName()); throw runtime_error(err); } data().g4Solids[shape] = solid; } return solid; } /// Dump logical volume in GDML format to output stream void* Geant4Converter::handleVolume(const string& name, const TGeoVolume* volume) const { Geant4GeometryInfo& info = data(); G4LogicalVolume* vol = info.g4Volumes[volume]; if ( !vol ) { const TGeoVolume* v = volume; Volume _v = Ref_t(v); string n = v->GetName(); TGeoMedium* m = v->GetMedium(); TGeoShape* s = v->GetShape(); G4VSolid* solid = (G4VSolid*)handleSolid(s->GetName(),s); G4Material* medium = 0; bool assembly = s->IsA() == TGeoShapeAssembly::Class(); SensitiveDetector det = _v.sensitiveDetector(); G4VSensitiveDetector* sd = 0; if ( det.isValid() ) { sd = info.g4SensDets[det.ptr()]; if ( !sd ) { throw runtime_error("G4Cnv::volume["+name+"]: + FATAL Failed to " "access Geant4 sensitive detector."); } sd->Activate(true); } LimitSet lim = _v.limitSet(); G4UserLimits* user_limits = 0; if ( lim.isValid() ) { user_limits = info.g4Limits[lim.ptr()]; if ( !user_limits ) { throw runtime_error("G4Cnv::volume["+name+"]: + FATAL Failed to " "access Geant4 user limits."); } } VisAttr vis = _v.visAttributes(); G4VisAttributes* vis_attr = 0; if ( vis.isValid() ) { vis_attr = (G4VisAttributes*)handleVis(vis.name(),vis.ptr()); } Region reg = _v.region(); G4Region* region = 0; if ( reg.isValid() ) { region = info.g4Regions[reg.ptr()]; if ( !region ) { throw runtime_error("G4Cnv::volume["+name+"]: + FATAL Failed to " "access Geant4 region."); } } printout(DEBUG,"Geant4Converter","++ Convert Volume %-32s: %p %s/%s assembly:%s sensitive:%s", n.c_str(),v,s->IsA()->GetName(),v->IsA()->GetName(),(assembly ? "YES" : "NO"), (det.isValid() ? "YES" : "NO")); if ( assembly ) { vol = (G4LogicalVolume*)new G4AssemblyVolume(); info.g4Volumes[v] = vol; return vol; } medium = (G4Material*)handleMaterial(m->GetName(),m); if ( !solid ) { throw runtime_error("G4Converter: No Geant4 Solid present for volume:"+n); } if ( !medium ) { throw runtime_error("G4Converter: No Geant4 material present for volume:"+n); } if ( user_limits ) { printout(DEBUG,"++ Volume + Apply LIMITS settings:%-24s to volume %s.",lim.name(),_v.name()); } vol = new G4LogicalVolume(solid,medium,n,0,sd,user_limits); if ( region ) { printout(DEBUG,"Geant4Converter","++ Volume + Apply REGION settings: %s to volume %s.",reg.name(),_v.name()); vol->SetRegion(region); region->AddRootLogicalVolume(vol); } if ( vis_attr ) { vol->SetVisAttributes(vis_attr); } if ( sd ) { printout(DEBUG,"Geant4Converter","++ Volume: + %s <> %s Solid:%s Mat:%s SD:%s", name.c_str(),vol->GetName().c_str(),solid->GetName().c_str(), medium->GetName().c_str(),sd->GetName().c_str()); } info.g4Volumes[v] = vol; printout(DEBUG,"Geant4Converter", "++ Volume + %s converted: %p ---> G4: %p",n.c_str(),v,vol); } return vol; } /// Dump logical volume in GDML format to output stream void* Geant4Converter::collectVolume(const string& /* name */, const TGeoVolume* volume) const { Geant4GeometryInfo& info = data(); const TGeoVolume* v = volume; Volume _v = Ref_t(v); Region reg = _v.region(); LimitSet lim = _v.limitSet(); SensitiveDetector det = _v.sensitiveDetector(); if ( lim.isValid() ) info.limits[lim.ptr()].insert(v); if ( reg.isValid() ) info.regions[reg.ptr()].insert(v); if ( det.isValid() ) info.sensitives[det.ptr()].insert(v); return (void*)v; } /// Dump volume placement in GDML format to output stream void* Geant4Converter::handlePlacement(const string& name, const TGeoNode* node) const { static Double_t identity_rot[] = { 1., 0., 0., 0., 1., 0., 0., 0., 1. }; Geant4GeometryInfo& info = data(); PlacementMap::const_iterator g4it = info.g4Placements.find(node); G4VPhysicalVolume* g4 = (g4it == info.g4Placements.end()) ? 0 : (*g4it).second; if ( !g4 ) { TGeoVolume* mot_vol = node->GetMotherVolume(); TGeoVolume* vol = node->GetVolume(); TGeoMatrix* trafo = node->GetMatrix(); if ( !trafo ) { printout(FATAL,"Geant4Converter","++ Attempt to handle placement without transformation:%p %s of type %s vol:%p", node,node->GetName(),node->IsA()->GetName(),vol); } else if ( 0 == vol ) { printout(FATAL,"Geant4Converter","++ Unknown G4 volume:%p %s of type %s vol:%s ptr:%p", node,node->GetName(),node->IsA()->GetName(),vol->IsA()->GetName(),vol); } else { int copy = node->GetNumber(); G4LogicalVolume* g4vol = info.g4Volumes[vol]; G4LogicalVolume* g4mot = info.g4Volumes[mot_vol]; Geant4AssemblyVolume* ass_mot = (Geant4AssemblyVolume*)g4mot; Geant4AssemblyVolume* ass_dau = (Geant4AssemblyVolume*)g4vol; const Double_t* trans = trafo->GetTranslation(); const Double_t* rot = trafo->IsRotation() ? trafo->GetRotationMatrix() : identity_rot; bool daughter_is_assembly = vol->IsA() == TGeoVolumeAssembly::Class(); bool mother_is_assembly = mot_vol ? mot_vol->IsA() == TGeoVolumeAssembly::Class() : false; MyTransform3D transform(rot[0],rot[1],rot[2],trans[0]*CM_2_MM, rot[3],rot[4],rot[5],trans[1]*CM_2_MM, rot[6],rot[7],rot[8],trans[2]*CM_2_MM); CLHEP::HepRotation rotmat=transform.getRotation(); if ( mother_is_assembly ) { // Mother is an assembly: printout(DEBUG,"Geant4Converter","++ Assembly: AddPlacedVolume: %16p dau:%s " "Tr:x=%8.3f y=%8.3f z=%8.3f Rot:phi=%7.3f theta=%7.3f psi=%7.3f\n", ass_mot,g4vol ? g4vol->GetName().c_str() : "---", transform.dx(),transform.dy(),transform.dz(), rotmat.getPhi(),rotmat.getTheta(),rotmat.getPsi()); size_t id = ass_mot->placeVolume(g4vol,transform); info.g4AssemblyChildren[ass_mot].push_back(make_pair(id,node)); return 0; } else if ( daughter_is_assembly ) { printout(DEBUG,"Geant4Converter","++ Assembly: makeImprint: %16p dau:%s " "Tr:x=%8.3f y=%8.3f z=%8.3f Rot:phi=%7.3f theta=%7.3f psi=%7.3f\n", ass_dau,g4mot ? g4mot->GetName().c_str() : "---", transform.dx(),transform.dy(),transform.dz(), rotmat.getPhi(),rotmat.getTheta(),rotmat.getPsi()); std::vector<G4VPhysicalVolume*> phys_volumes; AssemblyChildMap::iterator i = info.g4AssemblyChildren.find(ass_dau); if ( i == info.g4AssemblyChildren.end() ) { printout(ERROR, "Geant4Converter", "++ Non-existing assembly [%p]",ass_dau); } const AssemblyChildren& v = (*i).second; ass_dau->imprint(phys_volumes,g4mot,transform,copy,m_checkOverlaps); if ( v.size() != phys_volumes.size() ) { printout(ERROR, "Geant4Converter", "++ Unexpected number of placements in assembly: %ld <> %ld.", v.size(), phys_volumes.size()); } for(size_t j=0; j<v.size(); ++j) { info.g4Placements[v[j].second] = phys_volumes[j]; } return 0; } g4 = new G4PVPlacement(transform, // no rotation g4vol, // its logical volume name, // its name g4mot, // its mother (logical) volume false, // no boolean operations copy, // its copy number m_checkOverlaps); } info.g4Placements[node] = g4; } else { printout(ERROR, "Geant4Converter", "++ Attempt to DOUBLE-place physical volume: %s No:%d", name.c_str(),node->GetNumber()); } return g4; } /// Convert the geometry type region into the corresponding Geant4 object(s). void* Geant4Converter::handleRegion(const TNamed* region, const set<const TGeoVolume*>& /* volumes */) const { G4Region* g4 = data().g4Regions[region]; if ( !g4 ) { Region r = Ref_t(region); g4 = new G4Region(r.name()); // set production cut G4ProductionCuts* cuts = new G4ProductionCuts(); cuts->SetProductionCut(r.cut()); g4->SetProductionCuts(cuts); // create region info with storeSecondaries flag G4UserRegionInformation* info = new G4UserRegionInformation(); info->region = r; info->threshold = r.threshold(); info->storeSecondaries = r.storeSecondaries(); g4->SetUserInformation(info); printout(INFO, "Geant4Converter", "++ Converted region settings of:%s.",r.name()); vector<string>& limits = r.limits(); for(vector<string>::const_iterator i=limits.begin(); i!=limits.end(); ++i) { const string& nam = *i; LimitSet ls = m_lcdd.limitSet(nam); if ( ls.isValid() ) { bool found = false; const LimitMap& lm = data().g4Limits; for(LimitMap::const_iterator j=lm.begin(); j!=lm.end();++j) { if ( nam == (*j).first->GetName() ) { g4->SetUserLimits((*j).second); found = true; break; } } if ( found ) continue; } throw runtime_error("G4Region: Failed to resolve user limitset:"+*i); } data().g4Regions[region] = g4; } return g4; } /// Convert the geometry type LimitSet into the corresponding Geant4 object(s). void* Geant4Converter::handleLimitSet(const TNamed* limitset, const set<const TGeoVolume*>& /* volumes */) const { G4UserLimits* g4 = data().g4Limits[limitset]; if ( !g4 ) { LimitSet ls = Ref_t(limitset); g4 = new G4UserLimits(limitset->GetName()); const set<Limit>& limits = ls.limits(); for(LimitSet::Object::const_iterator i=limits.begin(); i!=limits.end(); ++i) { const Limit& l = *i; if ( l.name == "step_length_max" ) g4->SetMaxAllowedStep(l.value); else if ( l.name == "track_length_max" ) g4->SetMaxAllowedStep(l.value); else if ( l.name == "time_max" ) g4->SetUserMaxTime(l.value); else if ( l.name == "ekin_min" ) g4->SetUserMinEkine(l.value); else if ( l.name == "range_min" ) g4->SetUserMinRange(l.value); else throw runtime_error("Unknown Geant4 user limit: "+l.toString()); } data().g4Limits[limitset] = g4; } return g4; } /// Convert the geometry type SensitiveDetector into the corresponding Geant4 object(s). void* Geant4Converter::handleSensitive(const TNamed* sens_det, const set<const TGeoVolume*>& /* volumes */) const { Geant4GeometryInfo& info = data(); G4VSensitiveDetector* g4 = info.g4SensDets[sens_det]; if ( !g4 ) { SensitiveDetector sd = Ref_t(sens_det); string type = sd.type(), name = sd.name(); g4 = PluginService::Create<G4VSensitiveDetector*>(type,name,&m_lcdd); if ( !g4 ) { string tmp = type; tmp[0] = ::toupper(tmp[0]); type = "Geant4"+tmp; g4 = PluginService::Create<G4VSensitiveDetector*>(type,name,&m_lcdd); if ( !g4 ) { PluginDebug dbg; g4 = ROOT::Reflex::PluginService::Create<G4VSensitiveDetector*>(type,name,&m_lcdd); throw runtime_error("Geant4Converter<SensitiveDetector>: FATAL Failed to " "create Geant4 sensitive detector factory "+name+" of type "+type+"."); } } g4->Activate(true); G4SDManager::GetSDMpointer()->AddNewDetector(g4); info.g4SensDets[sens_det] = g4; } return g4; } /// Convert the geometry visualisation attributes to the corresponding Geant4 object(s). void* Geant4Converter::handleVis(const string& /* name */, const TNamed* vis) const { Geant4GeometryInfo& info = data(); G4VisAttributes* g4 = info.g4Vis[vis]; if ( !g4 ) { float r=0, g=0, b=0; VisAttr attr = Ref_t(vis); int style = attr.lineStyle(); attr.rgb(r,g,b); g4 = new G4VisAttributes(attr.visible(),G4Colour(r,g,b,attr.alpha())); //g4->SetLineWidth(attr->GetLineWidth()); g4->SetDaughtersInvisible(!attr.showDaughters()); if ( style == VisAttr::SOLID ) { g4->SetLineStyle(G4VisAttributes::unbroken); g4->SetForceWireframe(false); g4->SetForceSolid(true); } else if ( style == VisAttr::WIREFRAME || style == VisAttr::DASHED ) { g4->SetLineStyle(G4VisAttributes::dashed); g4->SetForceSolid(false); g4->SetForceWireframe(true); } info.g4Vis[vis] = g4; } return g4; } /// Handle the geant 4 specific properties void Geant4Converter::handleProperties(LCDD::Properties& prp) const { map<string,string> processors; static int s_idd = 9999999; string id; for(LCDD::Properties::const_iterator i=prp.begin(); i!=prp.end(); ++i) { const string& nam = (*i).first; const LCDD::PropertyValues& vals = (*i).second; if ( nam.substr(0,6) == "geant4" ) { LCDD::PropertyValues::const_iterator id_it = vals.find("id"); if ( id_it != vals.end() ) { id= (*id_it).second; } else { char txt[32]; ::sprintf(txt,"%d",++s_idd); id = txt; } processors.insert(make_pair(id,nam)); } } for(map<string,string>::const_iterator i=processors.begin(); i!=processors.end(); ++i) { const Geant4Converter* ptr = this; string nam = (*i).second; const LCDD::PropertyValues& vals = prp[nam]; string type = vals.find("type")->second; string tag = type + "_Geant4_action"; long result = ROOT::Reflex::PluginService::Create<long>(tag,&m_lcdd,ptr,&vals); if ( 0 == result ) { throw runtime_error("Failed to locate plugin to interprete files of type" " \""+tag+"\" - no factory:"+type); } result = *(long*)result; if ( result != 1 ) { throw runtime_error("Failed to invoke the plugin "+tag+" of type "+type); } printout(INFO, "Geant4Converter", "+++++ Executed Successfully Geant4 setup module *%s*.",type.c_str()); } } /// Convert the geometry type SensitiveDetector into the corresponding Geant4 object(s). void* Geant4Converter::printSensitive(const TNamed* sens_det, const set<const TGeoVolume*>& /* volumes */) const { Geant4GeometryInfo& info = data(); G4VSensitiveDetector* g4 = info.g4SensDets[sens_det]; ConstVolumeSet& volset = info.sensitives[sens_det]; SensitiveDetector sd = Ref_t(sens_det); stringstream str; printout(INFO, "Geant4Converter", "++ SensitiveDetector: %-18s %-20s Hits:%-16s", sd.name(), ("["+sd.type()+"]").c_str(),sd.hitsCollection().c_str()); str << " | " << "Cutoff:" << setw(6) << left << sd.energyCutoff() << setw(5) << right << volset.size() << " volumes "; if ( sd.region().isValid() ) str << " Region:" << setw(12) << left << sd.region().name(); if ( sd.limits().isValid() ) str << " Limits:" << setw(12) << left << sd.limits().name(); str << "."; printout(INFO, "Geant4Converter", str.str().c_str()); for(ConstVolumeSet::iterator i=volset.begin(); i!=volset.end();++i) { map<const TGeoVolume*, G4LogicalVolume*>::iterator v = info.g4Volumes.find(*i); G4LogicalVolume* vol = (*v).second; str.str(""); str << " | " << "Volume:" << setw(24) << left << vol->GetName() << " " << vol->GetNoDaughters() << " daughters."; printout(INFO, "Geant4Converter", str.str().c_str()); } return g4; } string printSolid(G4VSolid* sol) { stringstream str; if ( typeid(*sol) == typeid(G4Box) ) { const G4Box* b = (G4Box*)sol; str << "++ Box: x=" << b->GetXHalfLength() << " y=" << b->GetYHalfLength() << " z=" << b->GetZHalfLength(); } else if ( typeid(*sol) == typeid(G4Tubs) ) { const G4Tubs* t = (const G4Tubs*)sol; str << " Tubs: Ri=" << t->GetInnerRadius() << " Ra=" << t->GetOuterRadius() << " z/2=" << t->GetZHalfLength() << " Phi=" << t->GetStartPhiAngle() << "..." << t->GetDeltaPhiAngle (); } return str.str(); } /// Print G4 placement void* Geant4Converter::printPlacement(const string& name, const TGeoNode* node) const { Geant4GeometryInfo& info = data(); G4VPhysicalVolume* g4 = info.g4Placements[node]; G4LogicalVolume* vol = info.g4Volumes[node->GetVolume()]; G4LogicalVolume* mot = info.g4Volumes[node->GetMotherVolume()]; G4VSolid* sol = vol->GetSolid(); G4ThreeVector tr = g4->GetObjectTranslation(); G4VSensitiveDetector* sd = vol->GetSensitiveDetector(); if ( !sd ) return g4; stringstream str; str << "G4Cnv::placement: + " << name << " No:" << node->GetNumber() << " Vol:" << vol->GetName() << " Solid:" << sol->GetName(); printout(DEBUG,"G4Placement",str.str().c_str()); str.str(""); str << " |" << " Loc: x=" << tr.x() << " y=" << tr.y() << " z=" << tr.z(); printout(DEBUG,"G4Placement",str.str().c_str()); printout(DEBUG,"G4Placement",printSolid(sol).c_str()); str.str(""); str << " |" << " Ndau:" << vol->GetNoDaughters() << " physvols." << " Mat:" << vol->GetMaterial()->GetName() << " Mother:" << (char*)(mot ? mot->GetName().c_str() : "---"); printout(DEBUG,"G4Placement",str.str().c_str()); str.str(""); str << " |" << " SD:" << (char*)(sd ? sd->GetName().c_str() : "---"); printout(DEBUG,"G4Placement",str.str().c_str()); return g4; } template <typename O, typename C, typename F> void handle(const O* o, const C& c, F pmf) { for(typename C::const_iterator i=c.begin(); i != c.end(); ++i) { (o->*pmf)((*i)->GetName(),*i); } } template <typename O, typename C, typename F> void handleMap(const O* o, const C& c, F pmf) { for(typename C::const_iterator i=c.begin(); i != c.end(); ++i) (o->*pmf)((*i).first, (*i).second); } template <typename O, typename C, typename F> void handleRMap(const O* o, const C& c, F pmf) { for(typename C::const_reverse_iterator i=c.rbegin(); i != c.rend(); ++i) handle(o, (*i).second, pmf); } /// Create geometry conversion Geant4Converter& Geant4Converter::create(DetElement top) { Geant4GeometryInfo& geo = this->init(); m_data->clear(); collect(top, geo); s_topPtr = top.placement().ptr(); m_checkOverlaps = false; // We do not have to handle defines etc. // All positions and the like are not really named. // Hence, start creating the G4 objects for materials, solids and log volumes. Material mat = m_lcdd.material("Argon"); handleMaterial(mat.name(),mat.ptr()); mat = m_lcdd.material("Silicon"); handleMaterial(mat.name(),mat.ptr()); handle(this, geo.volumes, &Geant4Converter::collectVolume); handle(this, geo.solids, &Geant4Converter::handleSolid); printout(INFO,"Geant4Converter","++ Handled %ld solids.",geo.solids.size()); handle(this, geo.vis, &Geant4Converter::handleVis); printout(INFO,"Geant4Converter","++ Handled %ld visualization attributes.",geo.vis.size()); handleMap(this, geo.sensitives, &Geant4Converter::handleSensitive); printout(INFO,"Geant4Converter","++ Handled %ld sensitive detectors.",geo.sensitives.size()); handleMap(this, geo.limits, &Geant4Converter::handleLimitSet); printout(INFO,"Geant4Converter","++ Handled %ld limit sets.",geo.limits.size()); handleMap(this, geo.regions, &Geant4Converter::handleRegion); printout(INFO,"Geant4Converter","++ Handled %ld regions.",geo.regions.size()); handle(this, geo.volumes, &Geant4Converter::handleVolume); printout(INFO,"Geant4Converter","++ Handled %ld volumes.",geo.volumes.size()); // Now place all this stuff appropriately handleRMap(this, *m_data, &Geant4Converter::handlePlacement); //==================== Fields handleProperties(m_lcdd.properties()); //handleMap(this, geo.sensitives, &Geant4Converter::printSensitive); //handleRMap(this, *m_data, &Geant4Converter::printPlacement); geo.valid = true; return *this; }