//==========================================================================
//  AIDA Detector description implementation 
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
// All rights reserved.
//
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
//
// Author     : M.Frank
//
//==========================================================================

// Framework include files
#include "DD4hep/Detector.h"
#include "DD4hep/Plugins.h"
#include "DD4hep/Volumes.h"
#include "DD4hep/Printout.h"
#include "DD4hep/DD4hepUnits.h"
#include "DD4hep/PropertyTable.h"
#include "DD4hep/detail/ObjectsInterna.h"
#include "DD4hep/detail/DetectorInterna.h"

#include "DDG4/Geant4Field.h"
#include "DDG4/Geant4Converter.h"
#include "DDG4/Geant4UserLimits.h"
#include "DDG4/Geant4SensitiveDetector.h"

// ROOT includes
#include "TROOT.h"
#include "TColor.h"
#include "TGeoNode.h"
#include "TGeoShape.h"
#include "TGeoCone.h"
#include "TGeoHype.h"
#include "TGeoPcon.h"
#include "TGeoEltu.h"
#include "TGeoPgon.h"
#include "TGeoSphere.h"
#include "TGeoTorus.h"
#include "TGeoTrd1.h"
#include "TGeoTrd2.h"
#include "TGeoTube.h"
#include "TGeoArb8.h"
#include "TGeoMatrix.h"
#include "TGeoBoolNode.h"
#include "TGeoParaboloid.h"
#include "TGeoCompositeShape.h"
#include "TGeoShapeAssembly.h"
#include "TGeoScaledShape.h"
#include "TGeoManager.h"
#include "TClass.h"
#include "TMath.h"

// Geant4 include files
#include "G4VisAttributes.hh"
#include "G4ProductionCuts.hh"
#include "G4VUserRegionInformation.hh"

#include "G4Element.hh"
#include "G4Box.hh"
#include "G4Trd.hh"
#include "G4Tubs.hh"
#include "G4Trap.hh"
#include "G4Cons.hh"
#include "G4Hype.hh"
#include "G4Torus.hh"
#include "G4Sphere.hh"
#include "G4Polycone.hh"
#include "G4Polyhedra.hh"
#include "G4UnionSolid.hh"
#include "G4Paraboloid.hh"
#include "G4Ellipsoid.hh"
#include "G4GenericTrap.hh"
#include "G4ExtrudedSolid.hh"
#include "G4ReflectedSolid.hh"
#include "G4EllipticalTube.hh"
#include "G4SubtractionSolid.hh"
#include "G4IntersectionSolid.hh"
#include "G4Region.hh"
#include "G4UserLimits.hh"
#include "G4LogicalVolume.hh"
#include "G4Material.hh"
#include "G4Element.hh"
#include "G4Isotope.hh"
#include "G4Transform3D.hh"
#include "G4ThreeVector.hh"
#include "G4PVPlacement.hh"
#include "G4ElectroMagneticField.hh"
#include "G4FieldManager.hh"
#include "G4ReflectionFactory.hh"
#include "G4OpticalSurface.hh"
#include "G4LogicalSkinSurface.hh"
#include "G4LogicalBorderSurface.hh"
#include "G4MaterialPropertiesTable.hh"
#if G4VERSION_NUMBER >= 1040
#include "G4MaterialPropertiesIndex.hh"
#endif
#include "CLHEP/Units/SystemOfUnits.h"

// C/C++ include files
#include <iostream>
#include <iomanip>
#include <sstream>

namespace units = dd4hep;
using namespace dd4hep::detail;
using namespace dd4hep::sim;
using namespace dd4hep;
using namespace std;

#include "DDG4/Geant4AssemblyVolume.h"
#include "DD4hep/DetectorTools.h"
#include "G4RotationMatrix.hh"
#include "G4AffineTransform.hh"
#include "G4LogicalVolume.hh"
#include "G4VPhysicalVolume.hh"
#include "G4ReflectionFactory.hh"

static const double CM_2_MM = (CLHEP::centimeter/dd4hep::centimeter);

void Geant4AssemblyVolume::imprint(Geant4GeometryInfo& info,
                                   const TGeoNode*   parent,
                                   Chain chain,
                                   Geant4AssemblyVolume* pAssembly,
                                   G4LogicalVolume*  pMotherLV,
                                   G4Transform3D&    transformation,
                                   G4int copyNumBase,
                                   G4bool surfCheck )
{
  TGeoVolume* vol = parent->GetVolume();
  static int level=0;
  ++level;


  unsigned int  numberOfDaughters;

  if( copyNumBase == 0 )
  {
    numberOfDaughters = pMotherLV->GetNoDaughters();
  }
  else
  {
    numberOfDaughters = copyNumBase;
  }

  // We start from the first available index
  //
  numberOfDaughters++;

  ImprintsCountPlus();

  vector<G4AssemblyTriplet> triplets = pAssembly->fTriplets;
  //cout << " Assembly:" << detail::tools::placementPath(chain) << endl;

  for( unsigned int i = 0; i < triplets.size(); i++ )  {
    const TGeoNode* node = pAssembly->m_entries[i];
    Chain new_chain = chain;
    new_chain.emplace_back(node);
    //cout << " Assembly: Entry: " << detail::tools::placementPath(new_chain) << endl;

    G4Transform3D Ta( *(triplets[i].GetRotation()),
                      triplets[i].GetTranslation() );
    if ( triplets[i].IsReflection() )  { Ta = Ta * G4ReflectZ3D(); }

    G4Transform3D Tfinal = transformation * Ta;

    if ( triplets[i].GetVolume() )
    {
      // Generate the unique name for the next PV instance
      // The name has format:
      //
      // av_WWW_impr_XXX_YYY_ZZZ
      // where the fields mean:
      // WWW - assembly volume instance number
      // XXX - assembly volume imprint number
      // YYY - the name of a log. volume we want to make a placement of
      // ZZZ - the log. volume index inside the assembly volume
      //
      stringstream pvName;
      pvName << "av_"
             << GetAssemblyID()
             << "_impr_"
             << GetImprintsCount()
             << "_"
             << triplets[i].GetVolume()->GetName().c_str()
             << "_pv_"
             << i
             << ends;

      // Generate a new physical volume instance inside a mother
      // (as we allow 3D transformation use G4ReflectionFactory to
      //  take into account eventual reflection)
      //
      G4PhysicalVolumesPair pvPlaced
        = G4ReflectionFactory::Instance()->Place( Tfinal,
                                                  pvName.str().c_str(),
                                                  triplets[i].GetVolume(),
                                                  pMotherLV,
                                                  false,
                                                  numberOfDaughters + i,
                                                  surfCheck );

      // Register the physical volume created by us so we can delete it later
      //
      //fPVStore.emplace_back( pvPlaced.first );
      info.g4VolumeImprints[vol].emplace_back(new_chain,pvPlaced.first);
#if 0
      cout << " Assembly:Parent:" << parent->GetName() << " " << node->GetName()
           << " " <<  (void*)node << " G4:" << pvName.str() << " Daughter:"
           << detail::tools::placementPath(new_chain) << endl;
      cout << endl;
#endif

      if ( pvPlaced.second )  {
        G4Exception("G4AssemblyVolume::MakeImprint(..)", "GeomVol0003", FatalException,
                    "Fancy construct popping new mother from the stack!");
        //fPVStore.emplace_back( pvPlaced.second );
      }
    }
    else if ( triplets[i].GetAssembly() )  {
      // Place volumes in this assembly with composed transformation
      imprint(info, parent, new_chain, (Geant4AssemblyVolume*)triplets[i].GetAssembly(), pMotherLV, Tfinal, i*100+copyNumBase, surfCheck );
    }
    else   {
      --level;
      G4Exception("G4AssemblyVolume::MakeImprint(..)",
                  "GeomVol0003", FatalException,
                  "Triplet has no volume and no assembly");
    }
  }
  //cout << "Imprinted assembly level:" << level << " in mother:" << pMotherLV->GetName() << endl;
  --level;
}

namespace {
  static string indent = "";
  static Double_t s_identity_rot[] = { 1., 0., 0., 0., 1., 0., 0., 0., 1. };
  struct MyTransform3D : public G4Transform3D {
    MyTransform3D(double XX, double XY, double XZ, double DX, double YX, double YY, double YZ, double DY, double ZX, double ZY,
                  double ZZ, double DZ)
      : G4Transform3D(XX, XY, XZ, DX, YX, YY, YZ, DY, ZX, ZY, ZZ, DZ) {
    }
    MyTransform3D(const double* t, const double* r = s_identity_rot)
      : G4Transform3D(r[0],r[1],r[2],t[0]*CM_2_MM,r[3],r[4],r[5],t[1]*CM_2_MM,r[6],r[7],r[8],t[2]*CM_2_MM)  {
    }
  };

#if 0  // warning: unused function 'handleName' [-Wunused-function]
  void handleName(const TGeoNode* n) {
    TGeoVolume* v = n->GetVolume();
    TGeoMedium* m = v->GetMedium();
    TGeoShape* s = v->GetShape();
    string nam;
    printout(DEBUG, "G4", "TGeoNode:'%s' Vol:'%s' Shape:'%s' Medium:'%s'", n->GetName(), v->GetName(), s->GetName(),
             m->GetName());
  }
#endif

  class G4UserRegionInformation : public G4VUserRegionInformation {
  public:
    Region region;
    double threshold;
    bool storeSecondaries;
    G4UserRegionInformation()
      : threshold(0.0), storeSecondaries(false) {
    }
    virtual ~G4UserRegionInformation() {
    }
    virtual void Print() const {
      if (region.isValid())
        printout(DEBUG, "Region", "Name:%s", region.name());
    }
  };


  pair<double,double> g4PropertyConversion(int index)   {
#if G4VERSION_NUMBER >= 1040
    switch(index)  {
    case kRINDEX:                         return make_pair(CLHEP::keV/units::keV, 1.0);
    case kREFLECTIVITY:                   return make_pair(CLHEP::keV/units::keV, 1.0);
    case kREALRINDEX:                     return make_pair(CLHEP::keV/units::keV, 1.0);
    case kIMAGINARYRINDEX:                return make_pair(CLHEP::keV/units::keV, 1.0);
    case kEFFICIENCY:                     return make_pair(CLHEP::keV/units::keV, 1.0);
    case kTRANSMITTANCE:                  return make_pair(CLHEP::keV/units::keV, 1.0);
    case kSPECULARLOBECONSTANT:           return make_pair(CLHEP::keV/units::keV, 1.0);
    case kSPECULARSPIKECONSTANT:          return make_pair(CLHEP::keV/units::keV, 1.0);
    case kBACKSCATTERCONSTANT:            return make_pair(CLHEP::keV/units::keV, 1.0);
    case kGROUPVEL:                       return make_pair(CLHEP::keV/units::keV, (CLHEP::m/CLHEP::s)/(units::m/units::s));  // meter/second
    case kMIEHG:                          return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
    case kRAYLEIGH:                       return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);  // ??? says its a length
    case kWLSCOMPONENT:                   return make_pair(CLHEP::keV/units::keV, 1.0);
    case kWLSABSLENGTH:                   return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
    case kABSLENGTH:                      return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
    case kFASTCOMPONENT:                  return make_pair(CLHEP::keV/units::keV, 1.0);
    case kSLOWCOMPONENT:                  return make_pair(CLHEP::keV/units::keV, 1.0);
    case kPROTONSCINTILLATIONYIELD:       return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV); // Yields: 1/energy
    case kDEUTERONSCINTILLATIONYIELD:     return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
    case kTRITONSCINTILLATIONYIELD:       return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
    case kALPHASCINTILLATIONYIELD:        return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
    case kIONSCINTILLATIONYIELD:          return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
    case kELECTRONSCINTILLATIONYIELD:     return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
    default:
      break;
    }
    printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d", index);
#else
    printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d [Need Geant4 > 10.03]", index);
#endif
    return make_pair(0e0,0e0);
  }

  double g4ConstPropertyConversion(int index)   {
#if G4VERSION_NUMBER >= 1040
    switch(index)   {
    case kSURFACEROUGHNESS:            return CLHEP::m/units::m;                             // Length
    case kISOTHERMAL_COMPRESSIBILITY:  return (CLHEP::m3/CLHEP::keV)/(units::m3/CLHEP::keV); // Volume/Energy
    case kRS_SCALE_FACTOR:             return 1.0;  // ??
    case kWLSMEANNUMBERPHOTONS:        return 1.0;  // ??
    case kWLSTIMECONSTANT:             return CLHEP::second/units::second;                   // Time
    case kMIEHG_FORWARD:               return 1.0;
    case kMIEHG_BACKWARD:              return 1.0;
    case kMIEHG_FORWARD_RATIO:         return 1.0;
    case kSCINTILLATIONYIELD:          return units::keV/CLHEP::keV;                         // Energy
    case kRESOLUTIONSCALE:             return 1.0;
    case kFASTTIMECONSTANT:            return CLHEP::second/units::second;                   // Time
    case kFASTSCINTILLATIONRISETIME:   return CLHEP::second/units::second;                   // Time
    case kSLOWTIMECONSTANT:            return CLHEP::second/units::second;                   // Time
    case kSLOWSCINTILLATIONRISETIME:   return CLHEP::second/units::second;                   // Time
    case kYIELDRATIO:                  return 1.0;
    case kFERMIPOT:                    return CLHEP::keV/units::keV;                         // Energy
    case kDIFFUSION:                   return 1.0;
    case kSPINFLIP:                    return 1.0;
    case kLOSS:                        return 1.0;  // ??
    case kLOSSCS:                      return CLHEP::barn/units::barn;  // ??
    case kABSCS:                       return CLHEP::barn/units::barn;  // ??
    case kSCATCS:                      return CLHEP::barn/units::barn;  // ??
    case kMR_NBTHETA:                  return 1.0;
    case kMR_NBE:                      return 1.0;
    case kMR_RRMS:                     return 1.0;  // ??
    case kMR_CORRLEN:                  return CLHEP::m/units::m;                             // Length
    case kMR_THETAMIN:                 return 1.0;
    case kMR_THETAMAX:                 return 1.0;
    case kMR_EMIN:                     return CLHEP::keV/units::keV;                         // Energy
    case kMR_EMAX:                     return CLHEP::keV/units::keV;                         // Energy
    case kMR_ANGNOTHETA:               return 1.0;
    case kMR_ANGNOPHI:                 return 1.0;
    case kMR_ANGCUT:                   return 1.0;
    default:
      break;
    }
    printout(FATAL,"Geant4Converter", "+++ Cannot convert CONST material property with index: %d", index);
#else
    printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d [Need Geant4 > 10.03]", index);
#endif
    return 0.0;
  }
}

/// Initializing Constructor
Geant4Converter::Geant4Converter(const Detector& description_ref)
  : Geant4Mapping(description_ref), checkOverlaps(true) {
  this->Geant4Mapping::init();
  m_propagateRegions = true;
  outputLevel = PrintLevel(printLevel() - 1);
}

/// Initializing Constructor
Geant4Converter::Geant4Converter(const Detector& description_ref, PrintLevel level)
  : Geant4Mapping(description_ref), checkOverlaps(true) {
  this->Geant4Mapping::init();
  m_propagateRegions = true;
  outputLevel = level;
}

/// Standard destructor
Geant4Converter::~Geant4Converter() {
}

/// Dump element in GDML format to output stream
void* Geant4Converter::handleElement(const string& name, const Atom element) const {
  G4Element* g4e = data().g4Elements[element];
  if (!g4e) {
    g4e = G4Element::GetElement(name, false);
    if (!g4e) {
      PrintLevel lvl = debugElements ? ALWAYS : outputLevel;
      double a_conv = (CLHEP::g / CLHEP::mole);
      if (element->GetNisotopes() > 0) {
        g4e = new G4Element(name, element->GetTitle(), element->GetNisotopes());
        for (int i = 0, n = element->GetNisotopes(); i < n; ++i) {
          TGeoIsotope* iso = element->GetIsotope(i);
          G4Isotope* g4iso = G4Isotope::GetIsotope(iso->GetName(), false);
          if (!g4iso) {
            g4iso = new G4Isotope(iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA()*a_conv);
            printout(lvl, "Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
                     iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA());
          }
          else  {
            printout(lvl, "Geant4Converter", "++ Re-used G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
                     iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA());
          }
          g4e->AddIsotope(g4iso, element->GetRelativeAbundance(i));
        }
      }
      else {
        // This adds in Geant4 the natural isotopes, which we normally do not want. We want to steer it outselves.
        g4e = new G4Element(element->GetTitle(), name, element->Z(), element->A()*a_conv);
        printout(lvl, "Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
                 element->GetName(), element->Z(), element->N(), element->A());
#if 0  // Disabled for now!
        g4e = new G4Element(name, element->GetTitle(), 1);
        G4Isotope* g4iso = G4Isotope::GetIsotope(name, false);
        if (!g4iso) {
          g4iso = new G4Isotope(name, element->Z(), element->N(), element->A()*a_conv);
          printout(lvl, "Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
                   element->GetName(), element->Z(), element->N(), element->A());
        }
        else  {
          printout(lvl, "Geant4Converter", "++ Re-used G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
                   element->GetName(), element->Z(), element->N(), element->A());
        }
        g4e->AddIsotope(g4iso, 1.0);
#endif
      }
      stringstream str;
      str << (*g4e);
      printout(lvl, "Geant4Converter", "++ Created G4 %s No.Isotopes:%d",
               str.str().c_str(),element->GetNisotopes());
    }
    data().g4Elements[element] = g4e;
  }
  return g4e;
}

/// Dump material in GDML format to output stream
void* Geant4Converter::handleMaterial(const string& name, Material medium) const {
  Geant4GeometryInfo& info = data();
  G4Material* mat = info.g4Materials[medium];
  if (!mat) {
    PrintLevel lvl = debugMaterials ? ALWAYS : outputLevel;
    mat = G4Material::GetMaterial(name, false);
    if (!mat) {
      TGeoMaterial* material = medium->GetMaterial();
      G4State state   = kStateUndefined;
      double  density = material->GetDensity() * (CLHEP::gram / CLHEP::cm3);
      if (density < 1e-25)
        density = 1e-25;
      switch (material->GetState()) {
      case TGeoMaterial::kMatStateSolid:
        state = kStateSolid;
        break;
      case TGeoMaterial::kMatStateLiquid:
        state = kStateLiquid;
        break;
      case TGeoMaterial::kMatStateGas:
        state = kStateGas;
        break;
      default:
      case TGeoMaterial::kMatStateUndefined:
        state = kStateUndefined;
        break;
      }
      if (material->IsMixture()) {
        double A_total = 0.0;
        double W_total = 0.0;
        TGeoMixture* mix = (TGeoMixture*) material;
        int nElements = mix->GetNelements();
        mat = new G4Material(name, density, nElements, state, 
                             material->GetTemperature(), material->GetPressure());
        for (int i = 0; i < nElements; ++i)  {
          A_total += (mix->GetAmixt())[i];
          W_total += (mix->GetWmixt())[i];
        }
        for (int i = 0; i < nElements; ++i) {
          TGeoElement* e = mix->GetElement(i);
          G4Element* g4e = (G4Element*) handleElement(e->GetName(), Atom(e));
          if (!g4e) {
            printout(ERROR, "Material", 
                     "Missing component %s for material %s. A=%f W=%f", 
                     e->GetName(), mix->GetName(), A_total, W_total);
          }
          //mat->AddElement(g4e, (mix->GetAmixt())[i] / A_total);
          mat->AddElement(g4e, (mix->GetWmixt())[i] / W_total);
        }
      }
      else {
        double z = material->GetZ(), a = material->GetA();
        if ( z < 1.0000001 ) z = 1.0;
        if ( a < 0.5000001 ) a = 1.0;
        mat = new G4Material(name, z, a, density, state, 
                             material->GetTemperature(), material->GetPressure());
      }
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
      /// Attach the material properties if any
      G4MaterialPropertiesTable* tab = 0;
      TListIter propIt(&material->GetProperties());
      for(TObject* obj=propIt.Next(); obj; obj = propIt.Next())  {
        TNamed*      named  = (TNamed*)obj;
        TGDMLMatrix* matrix = info.manager->GetGDMLMatrix(named->GetTitle());
        Geant4GeometryInfo::PropertyVector* v =
          (Geant4GeometryInfo::PropertyVector*)handleMaterialProperties(matrix);
        if ( 0 == v )   {
          except("Geant4Converter", "++ FAILED to create G4 material %s [Cannot convert property:%s]",
                 material->GetName(), named->GetName());
        }
        if ( 0 == tab )  {
          tab = new G4MaterialPropertiesTable();
          mat->SetMaterialPropertiesTable(tab);
        }
        int idx = tab->GetPropertyIndex(named->GetName(), false);
        if ( idx < 0 )   {
          printout(ERROR, "Geant4Converter", "++ UNKNOWN Geant4 CONST Property: %-20s [IGNORED]", named->GetName());
          continue;
        }
        // We need to convert the property from TGeo units to Geant4 units
        auto conv = g4PropertyConversion(idx);
        vector<double> bins(v->bins), vals(v->values);
        for(size_t i=0, count=bins.size(); i<count; ++i)
          bins[i] *= conv.first, vals[i] *= conv.second;

        G4MaterialPropertyVector* vec = new G4MaterialPropertyVector(&bins[0], &vals[0], bins.size());
        tab->AddProperty(named->GetName(), vec);
        printout(lvl, "Geant4Converter", "++      Property: %-20s [%ld x %ld] -> %s ",
                 named->GetName(), matrix->GetRows(), matrix->GetCols(), named->GetTitle());
        for(size_t i=0, count=v->bins.size(); i<count; ++i)
          printout(lvl,named->GetName(),"  Geant4: %8.3g [MeV]  TGeo: %8.3g [GeV] Conversion: %8.3g",
                   bins[i], v->bins[i], conv.first);
      }
      /// Attach the material properties if any
      TListIter cpropIt(&material->GetConstProperties());
      for(TObject* obj=cpropIt.Next(); obj; obj = cpropIt.Next())  {
        Bool_t     err = kFALSE;
        TNamed*  named = (TNamed*)obj;
        double       v = info.manager->GetProperty(named->GetTitle(),&err);
        if ( err != kFALSE )   {
          except("Geant4Converter",
                 "++ FAILED to create G4 material %s "
                 "[Cannot convert const property: %s]",
                 material->GetName(), named->GetName());
        }
        if ( 0 == tab )  {
          tab = new G4MaterialPropertiesTable();
          mat->SetMaterialPropertiesTable(tab);
        }
        int idx = tab->GetConstPropertyIndex(named->GetName(), false);
        if ( idx < 0 )   {
          printout(ERROR, "Geant4Converter", "++ UNKNOWN Geant4 CONST Property: %-20s [IGNORED]", named->GetName());
          continue;
        }
        // We need to convert the property from TGeo units to Geant4 units
        double conv = g4ConstPropertyConversion(idx);
        printout(lvl, "Geant4Converter", "++      CONST Property: %-20s %g ", named->GetName(), v);
        tab->AddConstProperty(named->GetName(), v * conv);
      }
#endif
      auto* ionization = mat->GetIonisation();
      stringstream str;
      str << (*mat) << endl;
      if ( ionization )
        str << "              log(MEE): " << ionization->GetLogMeanExcEnergy();
      else
        str << "              log(MEE): UNKNOWN";
      printout(lvl, "Geant4Converter", "++ Created G4 %s", str.str().c_str());
    }
    info.g4Materials[medium] = mat;
  }
  return mat;
}

/// Dump solid in GDML format to output stream
void* Geant4Converter::handleSolid(const string& name, const TGeoShape* shape) const {
  G4VSolid* solid = 0;
  if (shape) {
    PrintLevel lvl = debugShapes ? ALWAYS : outputLevel;
    if (0 != (solid = data().g4Solids[shape])) {
      return solid;
    }
    else if (shape->IsA() == TGeoShapeAssembly::Class()) {
      // Assemblies have no corresponding 'shape' in Geant4. Ignore the shape translation.
      // It does not harm, since this 'shape' is never accessed afterwards.
      data().g4Solids[shape] = solid;
      return solid;
    }
    else if (shape->IsA() == TGeoBBox::Class()) {
      const TGeoBBox* sh = (const TGeoBBox*) shape;
      solid = new G4Box(name, sh->GetDX() * CM_2_MM, sh->GetDY() * CM_2_MM, sh->GetDZ() * CM_2_MM);
    }
    else if (shape->IsA() == TGeoTube::Class()) {
      const TGeoTube* sh = (const TGeoTube*) shape;
      solid = new G4Tubs(name, sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetDz() * CM_2_MM, 0, 2. * M_PI);
    }
    else if (shape->IsA() == TGeoTubeSeg::Class()) {
      const TGeoTubeSeg* sh = (const TGeoTubeSeg*) shape;
      solid = new G4Tubs(name, sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetDz() * CM_2_MM,
                         sh->GetPhi1() * DEGREE_2_RAD, (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD);
    }
    else if (shape->IsA() == TGeoEltu::Class()) {
      const TGeoEltu* sh = (const TGeoEltu*) shape;
      solid = new G4EllipticalTube(name,sh->GetA() * CM_2_MM, sh->GetB() * CM_2_MM, sh->GetDz() * CM_2_MM);
    }
    else if (shape->IsA() == TGeoTrd1::Class()) {
      const TGeoTrd1* sh = (const TGeoTrd1*) shape;
      solid = new G4Trd(name, sh->GetDx1() * CM_2_MM, sh->GetDx2() * CM_2_MM, sh->GetDy() * CM_2_MM, sh->GetDy() * CM_2_MM,
                        sh->GetDz() * CM_2_MM);
    }
    else if (shape->IsA() == TGeoTrd2::Class()) {
      const TGeoTrd2* sh = (const TGeoTrd2*) shape;
      solid = new G4Trd(name, sh->GetDx1() * CM_2_MM, sh->GetDx2() * CM_2_MM, sh->GetDy1() * CM_2_MM, sh->GetDy2() * CM_2_MM,
                        sh->GetDz() * CM_2_MM);
    }
    else if (shape->IsA() == TGeoHype::Class()) {
      const TGeoHype* sh = (const TGeoHype*) shape;
      solid = new G4Hype(name, sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM,
                         sh->GetStIn() * DEGREE_2_RAD, sh->GetStOut() * DEGREE_2_RAD,
                         sh->GetDz() * CM_2_MM);
    }
    else if (shape->IsA() == TGeoXtru::Class()) {
      const TGeoXtru* sh = (const TGeoXtru*) shape;
      size_t nz = sh->GetNz();
      vector<G4ExtrudedSolid::ZSection> z;
      vector<G4TwoVector> polygon;
      z.reserve(nz);
      polygon.reserve(nz);
      for(size_t i=0; i<nz; ++i)   {
        z.emplace_back(G4ExtrudedSolid::ZSection(sh->GetZ(i) * CM_2_MM,
                                              {sh->GetXOffset(i), sh->GetYOffset(i)},
                                              sh->GetScale(i)));
        polygon.emplace_back(G4TwoVector(sh->GetX(i) * CM_2_MM,sh->GetY(i) * CM_2_MM));
      }
      solid = new G4ExtrudedSolid(name, polygon, z);
    }
    else if (shape->IsA() == TGeoPgon::Class()) {
      const TGeoPgon* sh = (const TGeoPgon*) shape;
      double phi_start = sh->GetPhi1() * DEGREE_2_RAD;
      double phi_total = (sh->GetDphi() + sh->GetPhi1()) * DEGREE_2_RAD;
      vector<double> rmin, rmax, z;
      for (Int_t i = 0; i < sh->GetNz(); ++i) {
        rmin.emplace_back(sh->GetRmin(i) * CM_2_MM);
        rmax.emplace_back(sh->GetRmax(i) * CM_2_MM);
        z.emplace_back(sh->GetZ(i) * CM_2_MM);
      }
      solid = new G4Polyhedra(name, phi_start, phi_total, sh->GetNedges(), sh->GetNz(), &z[0], &rmin[0], &rmax[0]);
    }
    else if (shape->IsA() == TGeoPcon::Class()) {
      const TGeoPcon* sh = (const TGeoPcon*) shape;
      double phi_start = sh->GetPhi1() * DEGREE_2_RAD;
      double phi_total = (sh->GetDphi() + sh->GetPhi1()) * DEGREE_2_RAD;
      vector<double> rmin, rmax, z;
      for (Int_t i = 0; i < sh->GetNz(); ++i) {
        rmin.emplace_back(sh->GetRmin(i) * CM_2_MM);
        rmax.emplace_back(sh->GetRmax(i) * CM_2_MM);
        z.emplace_back(sh->GetZ(i) * CM_2_MM);
      }
      solid = new G4Polycone(name, phi_start, phi_total, sh->GetNz(), &z[0], &rmin[0], &rmax[0]);
    }
    else if (shape->IsA() == TGeoCone::Class()) {
      const TGeoCone* sh = (const TGeoCone*) shape;
      solid = new G4Cons(name, sh->GetRmin1() * CM_2_MM, sh->GetRmax1() * CM_2_MM, sh->GetRmin2() * CM_2_MM,
                         sh->GetRmax2() * CM_2_MM, sh->GetDz() * CM_2_MM, 0.0, 2.*M_PI);
    }
    else if (shape->IsA() == TGeoConeSeg::Class()) {
      const TGeoConeSeg* sh = (const TGeoConeSeg*) shape;
      solid = new G4Cons(name, sh->GetRmin1() * CM_2_MM, sh->GetRmax1() * CM_2_MM,
                         sh->GetRmin2() * CM_2_MM, sh->GetRmax2() * CM_2_MM,
                         sh->GetDz() * CM_2_MM,
                         sh->GetPhi1() * DEGREE_2_RAD, (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD);
    }
    else if (shape->IsA() == TGeoParaboloid::Class()) {
      const TGeoParaboloid* sh = (const TGeoParaboloid*) shape;
      solid = new G4Paraboloid(name, sh->GetDz() * CM_2_MM, sh->GetRlo() * CM_2_MM, sh->GetRhi() * CM_2_MM);
    }
#if 0  /* Not existent */
    else if (shape->IsA() == TGeoEllisoid::Class()) {
      const TGeoParaboloid* sh = (const TGeoParaboloid*) shape;
      solid = new G4Paraboloid(name, sh->GetDz() * CM_2_MM, sh->GetRlo() * CM_2_MM, sh->GetRhi() * CM_2_MM);
    }
#endif
    else if (shape->IsA() == TGeoSphere::Class()) {
      const TGeoSphere* sh = (const TGeoSphere*) shape;
      solid = new G4Sphere(name, sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetPhi1() * DEGREE_2_RAD,
                           sh->GetPhi2() * DEGREE_2_RAD, sh->GetTheta1() * DEGREE_2_RAD, sh->GetTheta2() * DEGREE_2_RAD);
    }
    else if (shape->IsA() == TGeoTorus::Class()) {
      const TGeoTorus* sh = (const TGeoTorus*) shape;
      solid = new G4Torus(name, sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetR() * CM_2_MM,
                          sh->GetPhi1() * DEGREE_2_RAD, sh->GetDphi() * DEGREE_2_RAD);
    }
    else if (shape->IsA() == TGeoTrap::Class()) {
      const TGeoTrap* sh = (const TGeoTrap*) shape;
      solid = new G4Trap(name, sh->GetDz() * CM_2_MM, sh->GetTheta() * DEGREE_2_RAD, sh->GetPhi() * DEGREE_2_RAD,
                         sh->GetH1() * CM_2_MM, sh->GetBl1() * CM_2_MM, sh->GetTl1() * CM_2_MM, sh->GetAlpha1() * DEGREE_2_RAD,
                         sh->GetH2() * CM_2_MM, sh->GetBl2() * CM_2_MM, sh->GetTl2() * CM_2_MM, sh->GetAlpha2() * DEGREE_2_RAD);
    }
    else if (shape->IsA() == TGeoArb8::Class())  {
      vector<G4TwoVector> vertices;
      TGeoTrap* sh = (TGeoTrap*) shape;
      Double_t* vtx_xy = sh->GetVertices();
      for ( size_t i=0; i<8; ++i, vtx_xy +=2 )
        vertices.emplace_back(G4TwoVector(vtx_xy[0] * CM_2_MM,vtx_xy[1] * CM_2_MM));
      solid = new G4GenericTrap(name, sh->GetDz() * CM_2_MM, vertices);
    }
    else if (shape->IsA() == TGeoScaledShape::Class())  {
      TGeoScaledShape* sh = (TGeoScaledShape*) shape;
      const double*    vals = sh->GetScale()->GetScale();
      Solid            s_sh(sh->GetShape());
      G4VSolid* scaled = (G4VSolid*)handleSolid(s_sh.name(), s_sh.ptr());
      solid = new G4ReflectedSolid(scaled->GetName() + "_refl",
                                   scaled, G4Scale3D(vals[0],vals[1],vals[2]));
      printout(INFO,"G4Shapes","Converting scaled shape from reflection: %s",sh->GetName());
    }
    else if (shape->IsA() == TGeoCompositeShape::Class())    {
      const TGeoCompositeShape* sh = (const TGeoCompositeShape*) shape;
      const TGeoBoolNode* boolean = sh->GetBoolNode();
      TGeoBoolNode::EGeoBoolType oper = boolean->GetBooleanOperator();
      TGeoMatrix* matrix = boolean->GetRightMatrix();
      G4VSolid* left  = (G4VSolid*) handleSolid(name + "_left", boolean->GetLeftShape());
      G4VSolid* right = (G4VSolid*) handleSolid(name + "_right", boolean->GetRightShape());

      if (!left) {
        throw runtime_error("G4Converter: No left Geant4 Solid present for composite shape:" + name);
      }
      if (!right) {
        throw runtime_error("G4Converter: No right Geant4 Solid present for composite shape:" + name);
      }

      //specific case!
      //Ellipsoid tag preparing
      //if left == TGeoScaledShape AND right  == TGeoBBox
      //   AND if TGeoScaledShape->GetShape == TGeoSphere
      TGeoShape* ls = boolean->GetLeftShape();
      TGeoShape* rs = boolean->GetRightShape();
      if (strcmp(ls->ClassName(), "TGeoScaledShape") == 0 &&
          strcmp(rs->ClassName(), "TGeoBBox") == 0) {
        if (strcmp(((TGeoScaledShape *)ls)->GetShape()->ClassName(), "TGeoSphere") == 0) {
          if (oper == TGeoBoolNode::kGeoIntersection) {
            TGeoScaledShape* lls = (TGeoScaledShape *)ls;
            TGeoBBox* rrs = (TGeoBBox*)rs;
            double sx     = lls->GetScale()->GetScale()[0];
            double sy     = lls->GetScale()->GetScale()[1];
            double radius = ((TGeoSphere *)lls->GetShape())->GetRmax();
            double dz     = rrs->GetDZ();
            double zorig  = rrs->GetOrigin()[2];
            double zcut2  = dz + zorig;
            double zcut1  = 2 * zorig - zcut2;
            solid = new G4Ellipsoid(name,
                                    sx * radius * CM_2_MM,
                                    sy * radius * CM_2_MM,
                                    radius * CM_2_MM,
                                    zcut1 * CM_2_MM,
                                    zcut2 * CM_2_MM);
            data().g4Solids[shape] = solid;
            return solid;
          }
        }
      }

      if (matrix->IsRotation()) {
        MyTransform3D transform(matrix->GetTranslation(),matrix->GetRotationMatrix());
        if (oper == TGeoBoolNode::kGeoSubtraction)
          solid = new G4SubtractionSolid(name, left, right, transform);
        else if (oper == TGeoBoolNode::kGeoUnion)
          solid = new G4UnionSolid(name, left, right, transform);
        else if (oper == TGeoBoolNode::kGeoIntersection)
          solid = new G4IntersectionSolid(name, left, right, transform);
      }
      else {
        const Double_t *t = matrix->GetTranslation();
        G4ThreeVector transform(t[0] * CM_2_MM, t[1] * CM_2_MM, t[2] * CM_2_MM);
        if (oper == TGeoBoolNode::kGeoSubtraction)
          solid = new G4SubtractionSolid(name, left, right, 0, transform);
        else if (oper == TGeoBoolNode::kGeoUnion)
          solid = new G4UnionSolid(name, left, right, 0, transform);
        else if (oper == TGeoBoolNode::kGeoIntersection)
          solid = new G4IntersectionSolid(name, left, right, 0, transform);
      }
    }

    if (!solid) {
      string err = "Failed to handle unknown solid shape:" + name + " of type " + string(shape->IsA()->GetName());
      throw runtime_error(err);
    }
    else  {
      printout(lvl,"Geant4Converter","++ Successessfully converted shape [%p] of type:%s to %s.",
               solid,shape->IsA()->GetName(),typeName(typeid(*solid)).c_str());
    }
    data().g4Solids[shape] = solid;
  }
  return solid;
}

/// Dump logical volume in GDML format to output stream
void* Geant4Converter::handleVolume(const string& name, const TGeoVolume* volume) const {
  Geant4GeometryInfo& info = data();
  PrintLevel lvl = debugVolumes ? ALWAYS : outputLevel;
  Geant4GeometryMaps::VolumeMap::const_iterator volIt = info.g4Volumes.find(volume);
  Volume     _v(volume);
  if ( _v.testFlagBit(Volume::VETO_SIMU) )  {
    printout(lvl, "Geant4Converter", "++ Volume %s not converted [Veto'ed for simulation]",volume->GetName());
    return 0;
  }
  else if (volIt == info.g4Volumes.end() ) {
    const TGeoVolume* v = volume;
    string      n   = v->GetName();
    TGeoMedium* med = v->GetMedium();
    TGeoShape* sh   = v->GetShape();
    G4VSolid* solid = (G4VSolid*) handleSolid(sh->GetName(), sh);
    G4Material* medium = 0;
    bool assembly = sh->IsA() == TGeoShapeAssembly::Class() || v->IsA() == TGeoVolumeAssembly::Class();

    LimitSet lim = _v.limitSet();
    G4UserLimits* user_limits = 0;
    if (lim.isValid()) {
      user_limits = info.g4Limits[lim];
      if (!user_limits) {
        throw runtime_error("G4Cnv::volume[" + name + "]:    + FATAL Failed to "
                            "access Geant4 user limits.");
      }
    }
    VisAttr vis = _v.visAttributes();
    G4VisAttributes* vis_attr = 0;
    if (vis.isValid()) {
      vis_attr = (G4VisAttributes*)handleVis(vis.name(), vis);
    }
    Region reg = _v.region();
    G4Region* region = 0;
    if (reg.isValid()) {
      region = info.g4Regions[reg];
      if (!region) {
        throw runtime_error("G4Cnv::volume[" + name + "]:    + FATAL Failed to "
                            "access Geant4 region.");
      }
    }
    printout(lvl, "Geant4Converter", "++ Convert Volume %-32s: %p %s/%s assembly:%s",
             n.c_str(), v, sh->IsA()->GetName(), v->IsA()->GetName(), yes_no(assembly));

    if (assembly) {
      //info.g4AssemblyVolumes[v] = new Geant4AssemblyVolume();
      return 0;
    }
    medium = (G4Material*) handleMaterial(med->GetName(), Material(med));
    if (!solid) {
      throw runtime_error("G4Converter: No Geant4 Solid present for volume:" + n);
    }
    if (!medium) {
      throw runtime_error("G4Converter: No Geant4 material present for volume:" + n);
    }
    if (user_limits) {
      printout(lvl, "Geant4Converter", "++ Volume     + Apply LIMITS settings:%-24s to volume %s.",
               lim.name(), _v.name());
    }
    G4LogicalVolume* vol = new G4LogicalVolume(solid, medium, n, 0, 0, user_limits);
    if (region) {
      printout(lvl, "Geant4Converter", "++ Volume     + Apply REGION settings: %s to volume %s.",
               reg.name(), _v.name());
      vol->SetRegion(region);
      region->AddRootLogicalVolume(vol);
    }
    if (vis_attr) {
      vol->SetVisAttributes(vis_attr);
    }
    info.g4Volumes[v] = vol;
    printout(lvl, "Geant4Converter", "++ Volume     + %s converted: %p ---> G4: %p", n.c_str(), v, vol);
  }
  return nullptr;
}

/// Dump logical volume in GDML format to output stream
void* Geant4Converter::collectVolume(const string& /* name */, const TGeoVolume* volume) const {
  Geant4GeometryInfo& info = data();
  const TGeoVolume* v = volume;
  Volume _v(v);
  Region reg = _v.region();
  LimitSet lim = _v.limitSet();
  SensitiveDetector det = _v.sensitiveDetector();

  if (lim.isValid())
    info.limits[lim].insert(v);
  if (reg.isValid())
    info.regions[reg].insert(v);
  if (det.isValid())
    info.sensitives[det].insert(v);
  return (void*) v;
}

/// Dump volume placement in GDML format to output stream
void* Geant4Converter::handleAssembly(const string& name, const TGeoNode* node) const {
  TGeoVolume* mot_vol = node->GetVolume();
  PrintLevel lvl = debugVolumes ? ALWAYS : outputLevel;
  if ( mot_vol->IsA() != TGeoVolumeAssembly::Class() )    {
    return 0;
  }
  Volume _v(mot_vol);
  if ( _v.testFlagBit(Volume::VETO_SIMU) )  {
    printout(lvl, "Geant4Converter", "++ AssemblyNode %s not converted [Veto'ed for simulation]",node->GetName());
    return 0;
  }
  Geant4GeometryInfo& info = data();
  Geant4AssemblyVolume* g4 = info.g4AssemblyVolumes[node];

  if ( !g4 )  {
    g4 = new Geant4AssemblyVolume();
    for(Int_t i=0; i < mot_vol->GetNdaughters(); ++i)   {
      TGeoNode*   d = mot_vol->GetNode(i);
      TGeoVolume* dau_vol = d->GetVolume();
      TGeoMatrix* tr = d->GetMatrix();
      MyTransform3D transform(tr->GetTranslation(),tr->IsRotation() ? tr->GetRotationMatrix() : s_identity_rot);
      if ( dau_vol->IsA() == TGeoVolumeAssembly::Class() )  {
        Geant4GeometryMaps::AssemblyMap::iterator assIt = info.g4AssemblyVolumes.find(d);
        if ( assIt == info.g4AssemblyVolumes.end() )  {
          printout(FATAL, "Geant4Converter", "+++ Invalid child assembly at %s : %d  parent: %s child:%s",
                   __FILE__, __LINE__, name.c_str(), d->GetName());
          return 0;
        }
        g4->placeAssembly(d,(*assIt).second,transform);
        printout(lvl, "Geant4Converter", "+++ Assembly: AddPlacedAssembly : dau:%s "
                 "to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
                 dau_vol->GetName(), mot_vol->GetName(),
                 transform.dx(), transform.dy(), transform.dz());
      }
      else   {
        Geant4GeometryMaps::VolumeMap::iterator volIt = info.g4Volumes.find(dau_vol);
        if ( volIt == info.g4Volumes.end() )  {
          printout(FATAL,"Geant4Converter", "+++ Invalid child volume at %s : %d  parent: %s child:%s",
                   __FILE__, __LINE__, name.c_str(), d->GetName());
          except("Geant4Converter", "+++ Invalid child volume at %s : %d  parent: %s child:%s",
                 __FILE__, __LINE__, name.c_str(), d->GetName());
        }
        g4->placeVolume(d,(*volIt).second, transform);
        printout(lvl, "Geant4Converter", "+++ Assembly: AddPlacedVolume : dau:%s "
                 "to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
                 dau_vol->GetName(), mot_vol->GetName(),
                 transform.dx(), transform.dy(), transform.dz());
      }
    }
    info.g4AssemblyVolumes[node] = g4;
  }
  return g4;
}

/// Dump volume placement in GDML format to output stream
void* Geant4Converter::handlePlacement(const string& name, const TGeoNode* node) const {
  Geant4GeometryInfo& info = data();
  PrintLevel lvl = debugPlacements ? ALWAYS : outputLevel;
  Geant4GeometryMaps::PlacementMap::const_iterator g4it = info.g4Placements.find(node);
  G4VPhysicalVolume* g4 = (g4it == info.g4Placements.end()) ? 0 : (*g4it).second;
  TGeoVolume* vol = node->GetVolume();
  Volume _v(vol);
  if ( _v.testFlagBit(Volume::VETO_SIMU) )  {
    printout(lvl, "Geant4Converter", "++ Placement %s not converted [Veto'ed for simulation]",node->GetName());
    return 0;
  }
  if (!g4) {
    TGeoVolume* mot_vol = node->GetMotherVolume();
    TGeoMatrix* tr = node->GetMatrix();
    if (!tr) {
      except("Geant4Converter", "++ Attempt to handle placement without transformation:%p %s of type %s vol:%p", node,
             node->GetName(), node->IsA()->GetName(), vol);
    }
    else if (0 == vol) {
      except("Geant4Converter", "++ Unknown G4 volume:%p %s of type %s ptr:%p", node, node->GetName(),
             node->IsA()->GetName(), vol);
    }
    else {
      int copy = node->GetNumber();
      bool node_is_assembly = vol->IsA() == TGeoVolumeAssembly::Class();
      bool mother_is_assembly = mot_vol ? mot_vol->IsA() == TGeoVolumeAssembly::Class() : false;
      MyTransform3D transform(tr->GetTranslation(),tr->IsRotation() ? tr->GetRotationMatrix() : s_identity_rot);
      Geant4GeometryMaps::VolumeMap::const_iterator volIt = info.g4Volumes.find(mot_vol);

      if ( mother_is_assembly )   {
        //
        // Mother is an assembly:
        // Nothing to do here, because:
        // -- placed volumes were already added before in "handleAssembly"
        // -- imprint cannot be made, because this requires a logical volume as a mother
        //
        printout(lvl, "Geant4Converter", "+++ Assembly: **** : dau:%s "
                 "to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
                 vol->GetName(), mot_vol->GetName(),
                 transform.dx(), transform.dy(), transform.dz());
        return 0;
      }
      else if ( node_is_assembly )   {
        //
        // Node is an assembly:
        // Imprint the assembly. The mother MUST already be transformed.
        //
        printout(lvl, "Geant4Converter", "+++ Assembly: makeImprint: dau:%s in mother %s "
                 "Tr:x=%8.3f y=%8.3f z=%8.3f",
                 node->GetName(), mot_vol ? mot_vol->GetName() : "<unknown>",
                 transform.dx(), transform.dy(), transform.dz());
        Geant4AssemblyVolume* ass = (Geant4AssemblyVolume*)info.g4AssemblyVolumes[node];
        Geant4AssemblyVolume::Chain chain;
        chain.emplace_back(node);
        ass->imprint(info,node,chain,ass,(*volIt).second, transform, copy, checkOverlaps);
        return 0;
      }
      else if ( node != info.manager->GetTopNode() && volIt == info.g4Volumes.end() )  {
        throw logic_error("Geant4Converter: Invalid mother volume found!");
      }
      G4LogicalVolume* g4vol = info.g4Volumes[vol];
      G4LogicalVolume* g4mot = info.g4Volumes[mot_vol];
      g4 = new G4PVPlacement(transform,   // no rotation
                             g4vol,     // its logical volume
                             name,      // its name
                             g4mot,     // its mother (logical) volume
                             false,     // no boolean operations
                             copy,      // its copy number
                             checkOverlaps);
    }
    info.g4Placements[node] = g4;
  }
  else {
    printout(ERROR, "Geant4Converter", "++ Attempt to DOUBLE-place physical volume: %s No:%d", name.c_str(), node->GetNumber());
  }
  return g4;
}

/// Convert the geometry type region into the corresponding Geant4 object(s).
void* Geant4Converter::handleRegion(Region region, const set<const TGeoVolume*>& /* volumes */) const {
  G4Region* g4 = data().g4Regions[region];
  if (!g4) {
    PrintLevel lvl = debugRegions ? ALWAYS : outputLevel;
    Region r = region;
    g4 = new G4Region(r.name());

    // create region info with storeSecondaries flag
    if( not r.wasThresholdSet() and r.storeSecondaries() ) {
      throw runtime_error("G4Region: StoreSecondaries is True, but no explicit threshold set:");
    }
    printout(lvl, "Geant4Converter", "++ Setting up region: %s", r.name());
    G4UserRegionInformation* info = new G4UserRegionInformation();
    info->region = r;
    info->threshold = r.threshold()*CLHEP::MeV/units::MeV;
    info->storeSecondaries = r.storeSecondaries();
    g4->SetUserInformation(info);

    printout(lvl, "Geant4Converter", "++ Converted region settings of:%s.", r.name());
    vector < string > &limits = r.limits();
    G4ProductionCuts* cuts = 0;
    // set production cut
    if( not r.useDefaultCut() ) {
      cuts = new G4ProductionCuts();
      cuts->SetProductionCut(r.cut()*CLHEP::mm/units::mm);
      printout(lvl, "Geant4Converter", "++ %s: Using default cut: %f [mm]",
               r.name(), r.cut()*CLHEP::mm/units::mm);
    }
    for (const auto& nam : limits )  {
      LimitSet ls = m_detDesc.limitSet(nam);
      if (ls.isValid()) {
        const LimitSet::Set& cts = ls.cuts();
        for (const auto& c : cts )   {
          int pid = 0;
          if ( c.particles == "*" ) pid = -1;
          else if ( c.particles == "e-"     ) pid = idxG4ElectronCut;
          else if ( c.particles == "e+"     ) pid = idxG4PositronCut;
          else if ( c.particles == "e[+-]"  ) pid = -idxG4PositronCut-idxG4ElectronCut;
          else if ( c.particles == "e[-+]"  ) pid = -idxG4PositronCut-idxG4ElectronCut;
          else if ( c.particles == "gamma"  ) pid = idxG4GammaCut;
          else if ( c.particles == "proton" ) pid = idxG4ProtonCut;
          else throw runtime_error("G4Region: Invalid production cut particle-type:" + c.particles);
          if ( !cuts ) cuts = new G4ProductionCuts();
          if ( pid == -(idxG4PositronCut+idxG4ElectronCut) )  {
            cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, idxG4PositronCut);
            cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, idxG4ElectronCut);
          }
          else  {
            cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, pid);
          }
          printout(lvl, "Geant4Converter", "++ %s: Set cut  [%s/%d] = %f [mm]",
                   r.name(), c.particles.c_str(), pid, c.value*CLHEP::mm/units::mm);
        }
        bool found = false;
        const auto& lm = data().g4Limits;
        for (const auto& j : lm )   {
          if (nam == j.first->GetName()) {
            g4->SetUserLimits(j.second);
            printout(lvl, "Geant4Converter", "++ %s: Set limits %s to region type %s",
                     r.name(), nam.c_str(), j.second->GetType().c_str());
            found = true;
            break;
          }
        }
        if ( found )   {
          continue;
        }
      }
      throw runtime_error("G4Region: Failed to resolve user limitset:" + nam);
    }
    /// Assign cuts to region if they were created
    if ( cuts ) g4->SetProductionCuts(cuts);
    data().g4Regions[region] = g4;
  }
  return g4;
}

/// Convert the geometry type LimitSet into the corresponding Geant4 object(s).
void* Geant4Converter::handleLimitSet(LimitSet limitset, const set<const TGeoVolume*>& /* volumes */) const {
  G4UserLimits* g4 = data().g4Limits[limitset];
  if (!g4) {
    struct LimitPrint  {
      const LimitSet& ls;
      LimitPrint(const LimitSet& lset) : ls(lset) {}
      const LimitPrint& operator()(const std::string& pref, const Geant4UserLimits::Handler& h)  const {
        if ( !h.particleLimits.empty() )  {
          printout(ALWAYS,"Geant4Converter",
                   "+++ LimitSet: Limit %s.%s applied for particles:",ls.name(), pref.c_str());
          for(const auto& p : h.particleLimits)
            printout(ALWAYS,"Geant4Converter","+++ LimitSet:    Particle type: %-18s PDG: %-6d : %f",
                     p.first->GetParticleName().c_str(), p.first->GetPDGEncoding(), p.second);
        }
        else  {
          printout(ALWAYS,"Geant4Converter",
                   "+++ LimitSet: Limit %s.%s NOT APPLIED.",ls.name(), pref.c_str());
        }
        return *this;
      }
    };
    Geant4UserLimits* limits = new Geant4UserLimits(limitset);
    g4 = limits;
    if ( debugRegions )    {
      LimitPrint print(limitset);
      print("maxTime",    limits->maxTime)
        ("minEKine",      limits->minEKine)
        ("minRange",      limits->minRange)
        ("maxStepLength", limits->maxStepLength)
        ("maxTrackLength",limits->maxTrackLength);
    }
    data().g4Limits[limitset] = g4;
  }
  return g4;
}

/// Convert the geometry visualisation attributes to the corresponding Geant4 object(s).
void* Geant4Converter::handleVis(const string& /* name */, VisAttr attr) const {
  Geant4GeometryInfo& info = data();
  G4VisAttributes* g4 = info.g4Vis[attr];
  if (!g4) {
    float red = 0, green = 0, blue = 0;
    int style = attr.lineStyle();
    attr.rgb(red, green, blue);
    g4 = new G4VisAttributes(attr.visible(), G4Colour(red, green, blue, attr.alpha()));
    //g4->SetLineWidth(attr->GetLineWidth());
    g4->SetDaughtersInvisible(!attr.showDaughters());
    if (style == VisAttr::SOLID) {
      g4->SetLineStyle(G4VisAttributes::unbroken);
      g4->SetForceWireframe(false);
      g4->SetForceSolid(true);
    }
    else if (style == VisAttr::WIREFRAME || style == VisAttr::DASHED) {
      g4->SetLineStyle(G4VisAttributes::dashed);
      g4->SetForceSolid(false);
      g4->SetForceWireframe(true);
    }
    info.g4Vis[attr] = g4;
  }
  return g4;
}

/// Handle the geant 4 specific properties
void Geant4Converter::handleProperties(Detector::Properties& prp) const {
  map < string, string > processors;
  static int s_idd = 9999999;
  string id;
  for (Detector::Properties::const_iterator i = prp.begin(); i != prp.end(); ++i) {
    const string& nam = (*i).first;
    const Detector::PropertyValues& vals = (*i).second;
    if (nam.substr(0, 6) == "geant4") {
      Detector::PropertyValues::const_iterator id_it = vals.find("id");
      if (id_it != vals.end()) {
        id = (*id_it).second;
      }
      else {
        char txt[32];
        ::snprintf(txt, sizeof(txt), "%d", ++s_idd);
        id = txt;
      }
      processors.emplace(id, nam);
    }
  }
  for (map<string, string>::const_iterator i = processors.begin(); i != processors.end(); ++i) {
    const GeoHandler* hdlr = this;
    string nam = (*i).second;
    const Detector::PropertyValues& vals = prp[nam];
    string type = vals.find("type")->second;
    string tag = type + "_Geant4_action";
    Detector* detPtr = const_cast<Detector*>(&m_detDesc);
    long result = PluginService::Create<long>(tag, detPtr, hdlr, &vals);
    if (0 == result) {
      throw runtime_error("Failed to locate plugin to interprete files of type"
                          " \"" + tag + "\" - no factory:" + type);
    }
    result = *(long*) result;
    if (result != 1) {
      throw runtime_error("Failed to invoke the plugin " + tag + " of type " + type);
    }
    printout(outputLevel, "Geant4Converter", "+++++ Executed Successfully Geant4 setup module *%s*.", type.c_str());
  }
}

#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Convert the geometry type material into the corresponding Geant4 object(s).
void* Geant4Converter::handleMaterialProperties(TObject* matrix) const    {
  TGDMLMatrix* gdmlMat = (TGDMLMatrix*)matrix;
  Geant4GeometryInfo& info = data();
  Geant4GeometryInfo::PropertyVector* g4 = info.g4OpticalProperties[gdmlMat];
  if (!g4) {
    PrintLevel lvl = debugMaterials ? ALWAYS : outputLevel;
    g4 = new Geant4GeometryInfo::PropertyVector();
    size_t rows = gdmlMat->GetRows();
    g4->name    = gdmlMat->GetName();
    g4->title   = gdmlMat->GetTitle();
    g4->bins.reserve(rows);
    g4->values.reserve(rows);
    for(size_t i=0; i<rows; ++i)  {
      g4->bins.emplace_back(gdmlMat->Get(i,0)  /*   *CLHEP::eV/units::eV   */);
      g4->values.emplace_back(gdmlMat->Get(i,1));
    }
    printout(lvl, "Geant4Converter", "++ Successfully converted material property:%s : %s [%ld rows]",
             gdmlMat->GetName(), gdmlMat->GetTitle(), rows);
    info.g4OpticalProperties[gdmlMat] = g4;
  }
  return g4;
}

static G4OpticalSurfaceFinish geant4_surface_finish(TGeoOpticalSurface::ESurfaceFinish f)   {
#define TO_G4_FINISH(x)  case TGeoOpticalSurface::kF##x : return x;
  switch(f)   {
    TO_G4_FINISH(polished);              // smooth perfectly polished surface
    TO_G4_FINISH(polishedfrontpainted);  // smooth top-layer (front) paint
    TO_G4_FINISH(polishedbackpainted);   // same is 'polished' but with a back-paint
 
    TO_G4_FINISH(ground);                // rough surface
    TO_G4_FINISH(groundfrontpainted);    // rough top-layer (front) paint
    TO_G4_FINISH(groundbackpainted);     // same as 'ground' but with a back-paint

    TO_G4_FINISH(polishedlumirrorair);   // mechanically polished surface, with lumirror
    TO_G4_FINISH(polishedlumirrorglue);  // mechanically polished surface, with lumirror & meltmount
    TO_G4_FINISH(polishedair);           // mechanically polished surface
    TO_G4_FINISH(polishedteflonair);     // mechanically polished surface, with teflon
    TO_G4_FINISH(polishedtioair);        // mechanically polished surface, with tio paint
    TO_G4_FINISH(polishedtyvekair);      // mechanically polished surface, with tyvek
    TO_G4_FINISH(polishedvm2000air);     // mechanically polished surface, with esr film
    TO_G4_FINISH(polishedvm2000glue);    // mechanically polished surface, with esr film & meltmount

    TO_G4_FINISH(etchedlumirrorair);     // chemically etched surface, with lumirror
    TO_G4_FINISH(etchedlumirrorglue);    // chemically etched surface, with lumirror & meltmount
    TO_G4_FINISH(etchedair);             // chemically etched surface
    TO_G4_FINISH(etchedteflonair);       // chemically etched surface, with teflon
    TO_G4_FINISH(etchedtioair);          // chemically etched surface, with tio paint
    TO_G4_FINISH(etchedtyvekair);        // chemically etched surface, with tyvek
    TO_G4_FINISH(etchedvm2000air);       // chemically etched surface, with esr film
    TO_G4_FINISH(etchedvm2000glue);      // chemically etched surface, with esr film & meltmount

    TO_G4_FINISH(groundlumirrorair);     // rough-cut surface, with lumirror
    TO_G4_FINISH(groundlumirrorglue);    // rough-cut surface, with lumirror & meltmount
    TO_G4_FINISH(groundair);             // rough-cut surface
    TO_G4_FINISH(groundteflonair);       // rough-cut surface, with teflon
    TO_G4_FINISH(groundtioair);          // rough-cut surface, with tio paint
    TO_G4_FINISH(groundtyvekair);        // rough-cut surface, with tyvek
    TO_G4_FINISH(groundvm2000air);       // rough-cut surface, with esr film
    TO_G4_FINISH(groundvm2000glue);      // rough-cut surface, with esr film & meltmount

    // for DAVIS model
    TO_G4_FINISH(Rough_LUT);             // rough surface
    TO_G4_FINISH(RoughTeflon_LUT);       // rough surface wrapped in Teflon tape
    TO_G4_FINISH(RoughESR_LUT);          // rough surface wrapped with ESR
    TO_G4_FINISH(RoughESRGrease_LUT);    // rough surface wrapped with ESR and coupled with opical grease
    TO_G4_FINISH(Polished_LUT);          // polished surface
    TO_G4_FINISH(PolishedTeflon_LUT);    // polished surface wrapped in Teflon tape
    TO_G4_FINISH(PolishedESR_LUT);       // polished surface wrapped with ESR
    TO_G4_FINISH(PolishedESRGrease_LUT); // polished surface wrapped with ESR and coupled with opical grease
    TO_G4_FINISH(Detector_LUT);          // polished surface with optical grease
  default:
    printout(ERROR,"Geant4Surfaces","++ Unknown finish style: %d [%s]. Assume polished!",
             int(f), TGeoOpticalSurface::FinishToString(f));
    return polished;
  }
#undef TO_G4_FINISH
}

static G4SurfaceType geant4_surface_type(TGeoOpticalSurface::ESurfaceType t)   {
#define TO_G4_TYPE(x)  case TGeoOpticalSurface::kT##x : return x;
  switch(t)   {
    TO_G4_TYPE(dielectric_metal);      // dielectric-metal interface
    TO_G4_TYPE(dielectric_dielectric); // dielectric-dielectric interface
    TO_G4_TYPE(dielectric_LUT);        // dielectric-Look-Up-Table interface
    TO_G4_TYPE(dielectric_LUTDAVIS);   // dielectric-Look-Up-Table DAVIS interface
    TO_G4_TYPE(dielectric_dichroic);   // dichroic filter interface
    TO_G4_TYPE(firsov);                // for Firsov Process
    TO_G4_TYPE(x_ray);                  // for x-ray mirror process
  default:
    printout(ERROR,"Geant4Surfaces","++ Unknown surface type: %d [%s]. Assume dielectric_metal!",
             int(t), TGeoOpticalSurface::TypeToString(t));
    return dielectric_metal;
  }
#undef TO_G4_TYPE
}

static G4OpticalSurfaceModel geant4_surface_model(TGeoOpticalSurface::ESurfaceModel surfMod)   {
#define TO_G4_MODEL(x)  case TGeoOpticalSurface::kM##x : return x;
  switch(surfMod)   {
    TO_G4_MODEL(glisur);   // original GEANT3 model
    TO_G4_MODEL(unified);  // UNIFIED model
    TO_G4_MODEL(LUT);      // Look-Up-Table model
    TO_G4_MODEL(DAVIS);    // DAVIS model
    TO_G4_MODEL(dichroic); // dichroic filter
  default:
    printout(ERROR,"Geant4Surfaces","++ Unknown surface model: %d [%s]. Assume glisur!",
             int(surfMod), TGeoOpticalSurface::ModelToString(surfMod));
    return glisur;
  }
#undef TO_G4_MODEL
}

/// Convert the optical surface to Geant4
void* Geant4Converter::handleOpticalSurface(TObject* surface) const    {
  TGeoOpticalSurface* optSurf    = (TGeoOpticalSurface*)surface;
  Geant4GeometryInfo& info = data();
  G4OpticalSurface*   g4   = info.g4OpticalSurfaces[optSurf];
  if (!g4) {
    G4SurfaceType          type   = geant4_surface_type(optSurf->GetType());
    G4OpticalSurfaceModel  model  = geant4_surface_model(optSurf->GetModel());
    G4OpticalSurfaceFinish finish = geant4_surface_finish(optSurf->GetFinish());
    g4 = new G4OpticalSurface(optSurf->GetName(), model, finish, type, optSurf->GetValue());
    g4->SetSigmaAlpha(optSurf->GetSigmaAlpha());
    // not implemented: g4->SetPolish(s->GetPolish());
    printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
             "++ Created OpticalSurface: %-18s type:%s model:%s finish:%s",
             optSurf->GetName(),
             TGeoOpticalSurface::TypeToString(optSurf->GetType()),
             TGeoOpticalSurface::ModelToString(optSurf->GetModel()),
             TGeoOpticalSurface::FinishToString(optSurf->GetFinish()));
    G4MaterialPropertiesTable* tab = 0;
    TListIter it(&optSurf->GetProperties());
    for(TObject* obj = it.Next(); obj; obj = it.Next())  {
      TNamed*      named = (TNamed*)obj;
      TGDMLMatrix* matrix = info.manager->GetGDMLMatrix(named->GetTitle());
      if ( 0 == tab )  {
        tab = new G4MaterialPropertiesTable();
        g4->SetMaterialPropertiesTable(tab);
      }
      Geant4GeometryInfo::PropertyVector* v =
        (Geant4GeometryInfo::PropertyVector*)handleMaterialProperties(matrix);
      if ( !v )  {  // Error!
        except("Geant4OpticalSurface","++ Failed to convert opt.surface %s. Property table %s is not defined!",
               optSurf->GetName(), named->GetTitle());
      }
      int idx = tab->GetPropertyIndex(named->GetName(), false);
      if ( idx < 0 )   {
        printout(ERROR, "Geant4Converter", "++ UNKNOWN Geant4 Property: %-20s [IGNORED]", named->GetName());
        continue;
      }
      // We need to convert the property from TGeo units to Geant4 units
      auto conv = g4PropertyConversion(idx);
      vector<double> bins(v->bins), vals(v->values);
      for(size_t i=0, count=v->bins.size(); i<count; ++i)
        bins[i] *= conv.first, vals[i] *= conv.second;
      G4MaterialPropertyVector* vec = new G4MaterialPropertyVector(&bins[0], &vals[0], bins.size());
      tab->AddProperty(named->GetName(), vec);
      
      printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
               "++       Property: %-20s [%ld x %ld] -->  %s",
               named->GetName(), matrix->GetRows(), matrix->GetCols(), named->GetTitle());
      for(size_t i=0, count=v->bins.size(); i<count; ++i)
        printout(debugSurfaces ? ALWAYS : DEBUG, named->GetName(),
                 "  Geant4: %8.3g [MeV]  TGeo: %8.3g [GeV] Conversion: %8.3g",
                 bins[i], v->bins[i], conv.first);
    }
    info.g4OpticalSurfaces[optSurf] = g4;
  }
  return g4;
}

/// Convert the skin surface to Geant4
void* Geant4Converter::handleSkinSurface(TObject* surface) const   {
  TGeoSkinSurface*    surf = (TGeoSkinSurface*)surface;
  Geant4GeometryInfo& info = data();
  G4LogicalSkinSurface* g4 = info.g4SkinSurfaces[surf];
  if (!g4) {
    G4OpticalSurface* optSurf  = info.g4OpticalSurfaces[OpticalSurface(surf->GetSurface())];
    G4LogicalVolume*  v = info.g4Volumes[surf->GetVolume()];
    g4 = new G4LogicalSkinSurface(surf->GetName(), v, optSurf);
    printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
             "++ Created SkinSurface: %-18s  optical:%s",
             surf->GetName(), surf->GetSurface()->GetName());
    info.g4SkinSurfaces[surf] = g4;
  }
  return g4;
}

/// Convert the border surface to Geant4
void* Geant4Converter::handleBorderSurface(TObject* surface) const   {
  TGeoBorderSurface*    surf = (TGeoBorderSurface*)surface;
  Geant4GeometryInfo&   info = data();
  G4LogicalBorderSurface* g4 = info.g4BorderSurfaces[surf];
  if (!g4) {
    G4OpticalSurface*  optSurf = info.g4OpticalSurfaces[OpticalSurface(surf->GetSurface())];
    G4VPhysicalVolume* n1 = info.g4Placements[surf->GetNode1()];
    G4VPhysicalVolume* n2 = info.g4Placements[surf->GetNode2()];
    g4 = new G4LogicalBorderSurface(surf->GetName(), n1, n2, optSurf);
    printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
             "++ Created BorderSurface: %-18s  optical:%s",
             surf->GetName(), surf->GetSurface()->GetName());
    info.g4BorderSurfaces[surf] = g4;
  }
  return g4;
}
#endif

/// Convert the geometry type SensitiveDetector into the corresponding Geant4 object(s).
void Geant4Converter::printSensitive(SensitiveDetector sens_det, const set<const TGeoVolume*>& /* volumes */) const {
  Geant4GeometryInfo&     info = data();
  set<const TGeoVolume*>& volset = info.sensitives[sens_det];
  SensitiveDetector       sd = sens_det;
  stringstream str;

  printout(INFO, "Geant4Converter", "++ SensitiveDetector: %-18s %-20s Hits:%-16s", sd.name(), ("[" + sd.type() + "]").c_str(),
           sd.hitsCollection().c_str());
  str << "                    | " << "Cutoff:" << setw(6) << left << sd.energyCutoff() << setw(5) << right << volset.size()
      << " volumes ";
  if (sd.region().isValid())
    str << " Region:" << setw(12) << left << sd.region().name();
  if (sd.limits().isValid())
    str << " Limits:" << setw(12) << left << sd.limits().name();
  str << ".";
  printout(INFO, "Geant4Converter", str.str().c_str());

  for (const auto i : volset )  {
    map<Volume, G4LogicalVolume*>::iterator v = info.g4Volumes.find(i);
    G4LogicalVolume* vol = (*v).second;
    str.str("");
    str << "                                   | " << "Volume:" << setw(24) << left << vol->GetName() << " "
        << vol->GetNoDaughters() << " daughters.";
    printout(INFO, "Geant4Converter", str.str().c_str());
  }
}

string printSolid(G4VSolid* sol) {
  stringstream str;
  if (typeid(*sol) == typeid(G4Box)) {
    const G4Box* b = (G4Box*) sol;
    str << "++ Box: x=" << b->GetXHalfLength() << " y=" << b->GetYHalfLength() << " z=" << b->GetZHalfLength();
  }
  else if (typeid(*sol) == typeid(G4Tubs)) {
    const G4Tubs* t = (const G4Tubs*) sol;
    str << " Tubs: Ri=" << t->GetInnerRadius() << " Ra=" << t->GetOuterRadius() << " z/2=" << t->GetZHalfLength() << " Phi="
        << t->GetStartPhiAngle() << "..." << t->GetDeltaPhiAngle();
  }
  return str.str();
}

/// Print G4 placement
void* Geant4Converter::printPlacement(const string& name, const TGeoNode* node) const {
  Geant4GeometryInfo& info = data();
  G4VPhysicalVolume* g4 = info.g4Placements[node];
  G4LogicalVolume* vol = info.g4Volumes[node->GetVolume()];
  G4LogicalVolume* mot = info.g4Volumes[node->GetMotherVolume()];
  G4VSolid* sol = vol->GetSolid();
  G4ThreeVector tr = g4->GetObjectTranslation();

  G4VSensitiveDetector* sd = vol->GetSensitiveDetector();
  if (!sd)  {
    return g4;
  }
  stringstream str;
  str << "G4Cnv::placement: + " << name << " No:" << node->GetNumber() << " Vol:" << vol->GetName() << " Solid:"
      << sol->GetName();
  printout(outputLevel, "G4Placement", str.str().c_str());
  str.str("");
  str << "                  |" << " Loc: x=" << tr.x() << " y=" << tr.y() << " z=" << tr.z();
  printout(outputLevel, "G4Placement", str.str().c_str());
  printout(outputLevel, "G4Placement", printSolid(sol).c_str());
  str.str("");
  str << "                  |" << " Ndau:" << vol->GetNoDaughters() << " physvols." << " Mat:" << vol->GetMaterial()->GetName()
      << " Mother:" << (char*) (mot ? mot->GetName().c_str() : "---");
  printout(outputLevel, "G4Placement", str.str().c_str());
  str.str("");
  str << "                  |" << " SD:" << sd->GetName();
  printout(outputLevel, "G4Placement", str.str().c_str());
  return g4;
}

template <typename O, typename C, typename F> void handleRefs(const O* o, const C& c, F pmf) {
  for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
    //(o->*pmf)((*i)->GetName(), *i);
    (o->*pmf)("", *i);
  }
}

template <typename O, typename C, typename F> void handle(const O* o, const C& c, F pmf) {
  for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
    (o->*pmf)((*i)->GetName(), *i);
  }
}

template <typename O, typename F> void handleArray(const O* o, const TObjArray* c, F pmf) {
  TObjArrayIter arr(c);
  for(TObject* i = arr.Next(); i; i=arr.Next())
    (o->*pmf)(i);
}

template <typename O, typename C, typename F> void handleMap(const O* o, const C& c, F pmf) {
  for (typename C::const_iterator i = c.begin(); i != c.end(); ++i)
    (o->*pmf)((*i).first, (*i).second);
}

template <typename O, typename C, typename F> void handleRMap(const O* o, const C& c, F pmf) {
  for (typename C::const_reverse_iterator i = c.rbegin(); i != c.rend(); ++i)  {
    //cout << "Handle RMAP [ " << (*i).first << " ]" << endl;
    handle(o, (*i).second, pmf);
  }
}

/// Create geometry conversion
Geant4Converter& Geant4Converter::create(DetElement top) {
  Geant4GeometryInfo& geo = this->init();
  World wrld = top.world();
  m_data->clear();
  geo.manager = &wrld.detectorDescription().manager();
  collect(top, geo);
  checkOverlaps = false;
  // We do not have to handle defines etc.
  // All positions and the like are not really named.
  // Hence, start creating the G4 objects for materials, solids and log volumes.

  //outputLevel = WARNING;
  //setPrintLevel(VERBOSE);

#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
  handleArray(this, geo.manager->GetListOfGDMLMatrices(), &Geant4Converter::handleMaterialProperties);
  handleArray(this, geo.manager->GetListOfOpticalSurfaces(), &Geant4Converter::handleOpticalSurface);
#endif
  
  handle(this,     geo.volumes, &Geant4Converter::collectVolume);
  handle(this,     geo.solids,  &Geant4Converter::handleSolid);
  printout(outputLevel, "Geant4Converter", "++ Handled %ld solids.", geo.solids.size());
  handleRefs(this, geo.vis,     &Geant4Converter::handleVis);
  printout(outputLevel, "Geant4Converter", "++ Handled %ld visualization attributes.", geo.vis.size());
  handleMap(this,  geo.limits,  &Geant4Converter::handleLimitSet);
  printout(outputLevel, "Geant4Converter", "++ Handled %ld limit sets.", geo.limits.size());
  handleMap(this,  geo.regions, &Geant4Converter::handleRegion);
  printout(outputLevel, "Geant4Converter", "++ Handled %ld regions.", geo.regions.size());
  handle(this,     geo.volumes, &Geant4Converter::handleVolume);
  printout(outputLevel, "Geant4Converter", "++ Handled %ld volumes.", geo.volumes.size());
  handleRMap(this, *m_data,     &Geant4Converter::handleAssembly);
  // Now place all this stuff appropriately
  handleRMap(this, *m_data,     &Geant4Converter::handlePlacement);
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
  /// Handle concrete surfaces
  handleArray(this, geo.manager->GetListOfSkinSurfaces(),   &Geant4Converter::handleSkinSurface);
  handleArray(this, geo.manager->GetListOfBorderSurfaces(), &Geant4Converter::handleBorderSurface);
#endif
  //==================== Fields
  handleProperties(m_detDesc.properties());
  if ( printSensitives )  {
    handleMap(this, geo.sensitives, &Geant4Converter::printSensitive);
  }
  if ( printPlacements )  {
    handleRMap(this, *m_data, &Geant4Converter::printPlacement);
  }

  geo.setWorld(top.placement().ptr());
  geo.valid = true;
  printout(INFO, "Geant4Converter", "+++  Successfully converted geometry to Geant4.");
  return *this;
}