diff --git a/Detector/DetCEPCv4/CMakeLists.txt b/Detector/DetCEPCv4/CMakeLists.txt
index c273799ff5c77a71140dafd9ba011b56a4b28f15..19046a6924f3b444505c0389300cc71c283fafeb 100644
--- a/Detector/DetCEPCv4/CMakeLists.txt
+++ b/Detector/DetCEPCv4/CMakeLists.txt
@@ -29,6 +29,7 @@ gaudi_add_module(DetCEPCv4
                          src/calorimeter/SEcal05_Endcaps.cpp
                          src/calorimeter/SEcal05_ECRing.cpp
                          src/calorimeter/SHcalRpc01_Barrel.cpp
+                         src/calorimeter/SHcalRpc02_Barrel.cpp
                          src/calorimeter/SHcalRpc01_Endcaps.cpp
                          src/calorimeter/SHcalRpc01_EndcapRing.cpp
 			 src/calorimeter/Yoke05_Barrel.cpp
diff --git a/Detector/DetCEPCv4/src/calorimeter/SHcalRpc02_Barrel.cpp b/Detector/DetCEPCv4/src/calorimeter/SHcalRpc02_Barrel.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..5d22cfcebe2dded2800c2f787e5cbe0b11b8e188
--- /dev/null
+++ b/Detector/DetCEPCv4/src/calorimeter/SHcalRpc02_Barrel.cpp
@@ -0,0 +1,349 @@
+//====================================================================
+//  SHcalRpc02 - update fixed 8 staves to optinal staves, FU Chengdong 
+//  SHcalRpc01 - Implementation from ILCSoft's Mokka version                              
+//====================================================================
+#include "DD4hep/DetFactoryHelper.h"
+#include "DD4hep/DD4hepUnits.h"
+#include "DD4hep/DetType.h"
+#include "DDSegmentation/TiledLayerGridXY.h"
+
+#include "DDRec/Surface.h"
+#include "DDRec/DetectorData.h"
+#include "XML/Utilities.h"
+
+using namespace std;
+
+using dd4hep::Ref_t;
+using dd4hep::BUILD_ENVELOPE;
+using dd4hep::DetElement;
+using dd4hep::Detector;
+using dd4hep::SensitiveDetector;
+using dd4hep::Segmentation;
+using dd4hep::Readout;
+using dd4hep::Material;
+using dd4hep::Volume;
+using dd4hep::PlacedVolume;
+using dd4hep::Position;
+using dd4hep::RotationZYX;
+using dd4hep::RotationZ;
+using dd4hep::Transform3D;
+using dd4hep::Box;
+using dd4hep::Tube;
+using dd4hep::PolyhedraRegular;
+using dd4hep::SubtractionSolid;
+using dd4hep::_toString;
+using dd4hep::pi;
+using dd4hep::rec::LayeredCalorimeterData;
+
+/** Construction of SHcalRpc01 detector, ported from Mokka driver SHcalRpc01.cc
+ *
+ *  Mokka History:
+ * - first implementation from ILCSoft
+ * - http://cepcgit.ihep.ac.cn/cepcsoft/MokkaC
+ */
+static Ref_t create_detector(Detector& theDetector, xml_h element, SensitiveDetector sens)  {
+  cout << "--------------------------" << endl;
+  cout << "creating SHcalRpc01_Barrel" << endl;
+  cout << "--------------------------" << endl;
+
+  xml_det_t    x_det  = element;
+  string       name   = x_det.nameStr();
+  int          det_id = x_det.id();
+  DetElement   det(name, det_id);
+
+  Volume envelope = dd4hep::xml::createPlacedEnvelope(theDetector, element , det ) ;
+  envelope.setVisAttributes(theDetector, "GrayVis");
+  dd4hep::xml::setDetectorTypeFlag(element, det) ;
+
+  if( theDetector.buildType() == BUILD_ENVELOPE ) return det ;
+
+  xml_comp_t    x_staves          = x_det.staves();
+  string   Hcal_radiator_material = x_staves.materialStr();
+  Material      stavesMaterial    = theDetector.material(Hcal_radiator_material);
+  Material      air               = theDetector.air();
+
+  sens.setType("calorimeter");
+
+  Readout readout = sens.readout();
+  Segmentation seg = readout.segmentation();
+  dd4hep::DDSegmentation::TiledLayerGridXY* tiledSeg = dynamic_cast<dd4hep::DDSegmentation::TiledLayerGridXY*> (seg.segmentation());
+  assert(tiledSeg && "no TiledLayerGridXY found" );
+
+  std::vector<double> cellSizeVector = seg.segmentation()->cellDimensions(0);
+  double cell_sizeX      = cellSizeVector[0];
+  double cell_sizeZ      = cellSizeVector[1];
+
+  double Hcal_inner_radius            = theDetector.constant<double>("Hcal_inner_radius");
+  double Hcal_outer_radius_set        = theDetector.constant<double>("Hcal_outer_radius");
+  double Hcal_half_length             = theDetector.constant<double>("Hcal_half_length");
+  int    Hcal_inner_symmetry          = theDetector.constant<int>("Hcal_inner_symmetry");
+  int    Hcal_outer_symmetry          = 0;
+  double Hcal_lateral_plate_thickness = theDetector.constant<double>("Hcal_lateral_structure_thickness");
+  double Hcal_modules_gap             = theDetector.constant<double>("Hcal_modules_gap");
+  double Ecal_outer_radius            = theDetector.constant<double>("Ecal_outer_radius");
+  int    Hcal_barrel_number_modules   = theDetector.constant<int>("Hcal_barrel_number_modules");
+  
+  double hPrime   = Ecal_outer_radius + theDetector.constant<double>("Hcal_Ecal_gap");
+  Hcal_inner_radius = hPrime / cos(pi/Hcal_inner_symmetry);
+  
+  double Hcal_normal_dim_z = (2*Hcal_half_length - (Hcal_barrel_number_modules-1)*Hcal_modules_gap)/Hcal_barrel_number_modules;
+
+  xml_coll_t c(x_det,_U(layer));
+  xml_comp_t x_layer = c;
+  int         Hcal_nlayers = x_layer.repeat();
+
+  double Hcal_radiator_thickness = 0;
+  double layerThickness = 0.0;
+  for(xml_coll_t k(x_layer,_U(slice)); k; ++k)  {
+    xml_comp_t x_slice = k;
+    layerThickness += x_slice.thickness();
+    if(x_slice.materialStr()==Hcal_radiator_material) Hcal_radiator_thickness = x_slice.thickness();
+  }
+  cout << " inner symmetry = " << Hcal_inner_symmetry << endl;
+  cout << " Hcal_inner_radius = " << hPrime << endl;
+  cout << " cell size xy = " <<  cell_sizeX << " cell size z = " << cell_sizeZ << endl;
+  cout << " layer_thickness (from slices) = " << layerThickness << " and radiator_thickness = " << Hcal_radiator_thickness << endl;
+  double Hcal_chamber_thickness = layerThickness - Hcal_radiator_thickness; 
+
+  int MinNumCellsInTransvPlane  = theDetector.constant<int>("Hcal_MinNumCellsInTransvPlane");
+  double RPC_EdgeWidth          = theDetector.constant<double>("Hcal_gas_edge_width");
+  double RPCGazInletInnerRadius = theDetector.constant<double>("Hcal_gasInlet_inner_radius");
+  double RPCGazInletOuterRadius = theDetector.constant<double>("Hcal_gasInlet_outer_radius");
+  double RPCGazInletLength      = theDetector.constant<double>("Hcal_gasInlet_length");
+  double RPC_PadSeparation      = theDetector.constant<double>("Hcal_pad_separation");
+  double Hcal_spacer_thickness  = theDetector.constant<double>("Hcal_spacer_thickness");
+  double Hcal_spacer_separation = theDetector.constant<double>("Hcal_spacer_separation");
+
+  //========== fill data for reconstruction ============================
+  LayeredCalorimeterData* caloData = new LayeredCalorimeterData ;
+  caloData->layoutType = LayeredCalorimeterData::BarrelLayout ;
+  caloData->inner_symmetry = Hcal_inner_symmetry  ;
+  caloData->outer_symmetry = Hcal_outer_symmetry  ;
+  caloData->phi0 = 0 ; // fg: also hardcoded below
+
+  // general calculated parameters
+  double AngleRatio=tan(dd4hep::pi/Hcal_inner_symmetry);
+  double d_InnerOctoSize=2*AngleRatio*Hcal_inner_radius;//"d"
+  double LMin = 2*RPC_EdgeWidth+cell_sizeX*MinNumCellsInTransvPlane+(MinNumCellsInTransvPlane+1)*RPC_PadSeparation;
+  cout << "LMin=" << LMin << endl;
+  double Ynl = 0.5*d_InnerOctoSize - Hcal_nlayers*layerThickness/tan(dd4hep::twopi/Hcal_inner_symmetry);
+  double Hcal_outer_radius = sqrt((LMin-Ynl)*(LMin-Ynl) + (hPrime + Hcal_nlayers*layerThickness)*(hPrime + Hcal_nlayers*layerThickness));
+  if(Hcal_outer_radius!=Hcal_outer_radius_set){
+    cout << "calculated Hcal_outer_radius != input, will impact HcalEndcap and HcalEndcapRing. Hcal_outer_radius = " << Hcal_outer_radius
+	 << " but set as " << Hcal_outer_radius_set << " difference = " << Hcal_outer_radius-Hcal_outer_radius_set << endl;
+    cout << "if Coil put inside of Hcal, it is possible!" << endl;  
+  }
+
+  /// extent of the calorimeter in the r-z-plane [ rmin, rmax, zmin, zmax ] in cm.
+  caloData->extent[0] = Hcal_inner_radius ;
+  caloData->extent[1] = Hcal_outer_radius ;
+  caloData->extent[2] = 0. ; // Barrel zmin is "0" by default.
+  caloData->extent[3] = Hcal_half_length ;
+
+  double Hcal_total_dim_y = Hcal_outer_radius - hPrime;
+  
+  // the  y_dim1_for_z kept as the original value in TDR
+  double Hcal_regular_chamber_dim_z = Hcal_normal_dim_z - 2 *(Hcal_lateral_plate_thickness);
+  //int N_cells_z =  static_cast <int> ( (Hcal_regular_chamber_dim_z - 2*RPC_EdgeWidth - RPC_PadSeparation) / (Hcal_cell_dim_x + RPC_PadSeparation) );
+  //  Hcal_cell_dim_z=(Hcal_regular_chamber_dim_z-RPC_PadSeparation )/N_cells_z
+  //                      - RPC_PadSeparation;
+  Tube solidCaloTube(0, Hcal_outer_radius, Hcal_half_length);
+
+  PolyhedraRegular solidOctogon(Hcal_inner_symmetry, 0, hPrime, 4*Hcal_half_length);
+  RotationZYX rotOctogon(dd4hep::twopi/2/Hcal_inner_symmetry,0,0);
+  SubtractionSolid solidCalo(solidCaloTube, solidOctogon, rotOctogon);
+  Volume logicCalo(name+"_radiator", solidCalo, stavesMaterial);
+  logicCalo.setAttributes(theDetector,x_det.regionStr(),x_det.limitsStr(),x_det.visStr());
+  PlacedVolume calo_pv = envelope.placeVolume(logicCalo, Position(0,0,0));
+  DetElement calo(det, "envelope", det_id);
+  calo.setPlacement(calo_pv);
+  if(tiledSeg) tiledSeg->setOffsetY(-(Hcal_regular_chamber_dim_z/2.-RPC_EdgeWidth)+0.5*cell_sizeZ);
+  for(int layer_id=1; layer_id<=Hcal_nlayers; layer_id++){
+    double yn = sqrt(Hcal_outer_radius*Hcal_outer_radius - (hPrime + layer_id*layerThickness)*(hPrime + layer_id*layerThickness));
+    double Yn = 0.5*d_InnerOctoSize - layer_id*layerThickness/tan(dd4hep::twopi/Hcal_inner_symmetry);
+
+    double halfX = Hcal_chamber_thickness/2.;
+    double halfY = (yn+Yn)/2.;
+    
+    LayeredCalorimeterData::Layer caloLayer ;
+    caloLayer.cellSize0 = cell_sizeX;
+    caloLayer.cellSize1 = cell_sizeZ;
+
+    //double halfZ = Hcal_normal_dim_z / 2.;
+    double halfZ = Hcal_regular_chamber_dim_z / 2.;
+    
+    double localXPos = hPrime + Hcal_radiator_thickness + Hcal_chamber_thickness/2. + (layer_id-1)*layerThickness;
+    double localYPos = -Yn + 0.5*(Yn + yn);
+
+    Box chamberSolid(halfY, halfZ, halfX);
+    string chamberLogical_name      = name+_toString(layer_id,"_layer%d");
+    Volume chamberLogical(chamberLogical_name, chamberSolid, air);
+    chamberLogical.setAttributes(theDetector, x_layer.regionStr(), x_layer.limitsStr(), x_layer.visStr());
+
+    if(tiledSeg) tiledSeg->setLayerOffsetX((-(halfY-RPC_EdgeWidth)+0.5*cell_sizeX)*2/cell_sizeX);
+
+    string layer_name      = name+_toString(layer_id,"_layer%d");
+
+    double nRadiationLengths=0.;
+    double nInteractionLengths=0.;
+    double thickness_sum=0;
+
+    nRadiationLengths   = Hcal_radiator_thickness/(stavesMaterial.radLength());
+    nInteractionLengths = Hcal_radiator_thickness/(stavesMaterial.intLength());
+
+    double slice_pos_z = -halfX;
+    int slice_number = 0;
+    for(xml_coll_t k(x_layer,_U(slice)); k; ++k)  {
+      xml_comp_t x_slice = k;
+      if(x_slice.materialStr()==Hcal_radiator_material) continue;
+      string   slice_name      = layer_name + _toString(slice_number,"_slice%d");
+      double   slice_thickness = x_slice.thickness();
+      Material slice_material  = theDetector.material(x_slice.materialStr());
+      if(layer_id==1) cout<<"  Layer_slice:  "<<  slice_name<<" slice_thickness:  "<< slice_thickness<< endl;
+      
+      slice_pos_z += slice_thickness/2.;
+      nRadiationLengths   += slice_thickness/(2.*slice_material.radLength());
+      nInteractionLengths += slice_thickness/(2.*slice_material.intLength());
+      thickness_sum       += slice_thickness/2;
+
+      // Slice volume & box
+      Box sliceSolid(halfY, halfZ, slice_thickness/2.);
+      Volume sliceVol(slice_name, sliceSolid, slice_material);
+      
+      if ( x_slice.isSensitive() ) {
+	sliceVol.setSensitiveDetector(sens);
+	if(RPC_EdgeWidth>0){
+	  double RPC_GazInlet_In_Z  = halfZ - RPC_EdgeWidth - RPCGazInletOuterRadius;
+	  double RPC_GazInlet_In_Y  = halfY - RPC_EdgeWidth/2;
+	  double RPC_GazInlet_Out_Z = -RPC_GazInlet_In_Z;
+	  double RPC_GazInlet_Out_Y =  RPC_GazInlet_In_Y;
+
+	  string mateialName = x_slice.attr<string>(_Unicode(edge_material));
+	  Material edge_material = theDetector.material(mateialName);
+	  Box solidRPCEdge1(halfY, halfZ, slice_thickness/2.);
+	  Box solidRPCEdge2(halfY-RPC_EdgeWidth, halfZ-RPC_EdgeWidth, slice_thickness/2.);
+	  SubtractionSolid solidRPCEdge(solidRPCEdge1, solidRPCEdge2, Position(0,0,0));
+	  Volume logicRPCEdge(slice_name+"_edge", solidRPCEdge, edge_material);
+	  logicRPCEdge.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
+	  sliceVol.placeVolume(logicRPCEdge);
+
+	  RotationZYX rotGaz(0, pi/2., 0);
+	  Tube solidRPCGazInlet(RPCGazInletInnerRadius,RPCGazInletOuterRadius,RPC_EdgeWidth/*RPCGazInletLength*//2);
+	  Volume logicRPCGazInlet(slice_name+"_GazInlet", solidRPCGazInlet, edge_material);
+	  logicRPCGazInlet.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
+	  logicRPCEdge.placeVolume(logicRPCGazInlet, Transform3D(rotGaz, Position(RPC_GazInlet_In_Y,RPC_GazInlet_In_Z, 0)));
+	  logicRPCEdge.placeVolume(logicRPCGazInlet, Transform3D(rotGaz, Position(RPC_GazInlet_Out_Y,RPC_GazInlet_Out_Z, 0)));
+	  
+	  Tube solidRPCGazInsideInlet(0,RPCGazInletInnerRadius,RPC_EdgeWidth/*RPCGazInletLength*//2);
+	  Volume logicRPCGazInsideInlet(slice_name+"_GazInsideInlet", solidRPCGazInsideInlet, slice_material);
+	  logicRPCGazInsideInlet.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),"SeeThrough");
+	  logicRPCEdge.placeVolume(logicRPCGazInsideInlet, Transform3D(rotGaz, Position(RPC_GazInlet_In_Y,RPC_GazInlet_In_Z, 0)));
+	  logicRPCEdge.placeVolume(logicRPCGazInsideInlet, Transform3D(rotGaz,Position(RPC_GazInlet_Out_Y,RPC_GazInlet_Out_Z, 0)));
+	}
+	if(Hcal_spacer_thickness>0){
+	  Tube solidRPCSpacer(0,Hcal_spacer_thickness/2,slice_thickness/2);
+	  Material space_material = theDetector.material(x_slice.attr<string>(_Unicode(spacer_material)));
+	  Volume logicRPCSpacer(slice_name+"_spacer", solidRPCSpacer, space_material);
+	  logicRPCSpacer.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
+	  RotationZYX rotSpacer(0, 0, 0);
+	  
+	  double gap_hZ = halfZ-RPC_EdgeWidth;
+	  double gap_hY = halfY-RPC_EdgeWidth;
+	  int y_number_of_separations = (int)(2*gap_hY/Hcal_spacer_separation);
+	  int z_number_of_separations = (int)(2*gap_hZ/Hcal_spacer_separation);
+	  double y_lateral_space = (2*gap_hY - y_number_of_separations*Hcal_spacer_separation)/2;
+	  double z_lateral_space = (2*gap_hZ - z_number_of_separations*Hcal_spacer_separation)/2;
+	  if(y_lateral_space < Hcal_spacer_thickness/2.){
+	    y_number_of_separations = (int)((2*gap_hY-Hcal_spacer_thickness)/Hcal_spacer_separation);
+	    y_lateral_space = (2*gap_hY - y_number_of_separations*Hcal_spacer_separation)/2;
+	  }
+	  if(z_lateral_space < Hcal_spacer_thickness/2.){
+	    z_number_of_separations = (int)((2*gap_hZ-Hcal_spacer_thickness)/Hcal_spacer_separation);
+	    z_lateral_space = (2*gap_hZ - z_number_of_separations*Hcal_spacer_separation)/2;
+	  }
+	  for(int y_counter = 0; y_counter <=y_number_of_separations; y_counter++){
+	    double SpacerY = gap_hY - y_lateral_space - y_counter*Hcal_spacer_separation;
+	    for(int z_counter = 0; z_counter <=z_number_of_separations; z_counter++){
+	      double SpacerZ = gap_hZ - z_lateral_space - z_counter*Hcal_spacer_separation;
+	      PlacedVolume space_pv = sliceVol.placeVolume(logicRPCSpacer, Transform3D(rotSpacer, Position(SpacerY,SpacerZ,0)));
+	    }
+	  }
+	}
+
+	caloLayer.inner_nRadiationLengths = nRadiationLengths;
+	caloLayer.inner_nInteractionLengths = nInteractionLengths;
+	caloLayer.inner_thickness = thickness_sum;
+	if(layer_id==1) cout<<"Hcal_Barrel:  inner_thickness= "<<thickness_sum<<endl;
+        //Store readout gasgap thickness
+	caloLayer.sensitive_thickness = slice_thickness;
+        //Reset counters to measure "outside" quantitites
+	nRadiationLengths=0.;
+	nInteractionLengths=0.;
+	thickness_sum = 0.;
+	
+	sliceVol.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),"SeeThrough");
+      }
+      else{
+	sliceVol.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
+      }
+      nRadiationLengths += slice_thickness/(2.*slice_material.radLength());
+      nInteractionLengths += slice_thickness/(2.*slice_material.intLength());
+      thickness_sum += slice_thickness/2;
+
+      // slice PlacedVolume
+      PlacedVolume slice_phv = chamberLogical.placeVolume(sliceVol,Position(0,0,slice_pos_z));
+      if ( x_slice.isSensitive() ) {
+	int slice_id  = (layer_id > Hcal_nlayers)? 1:-1;
+	slice_phv.addPhysVolID("layer",layer_id).addPhysVolID("slice",slice_id);
+      }
+      DetElement sliceDetE(layer_name,_toString(slice_number,"slice%d"),x_det.id());
+      sliceDetE.setPlacement(slice_phv);
+      // Increment x position for next slice.
+      slice_pos_z += slice_thickness/2.;
+      // Increment slice number.
+      ++slice_number;
+    }
+    caloLayer.outer_nRadiationLengths = nRadiationLengths;
+    caloLayer.outer_nInteractionLengths = nInteractionLengths;
+    caloLayer.outer_thickness = thickness_sum;
+    if(layer_id==1) cout << "Hcal_Barrel:  outer_thickness= " << thickness_sum << endl;
+    
+    double chamber_y_offset = -(-Hcal_total_dim_y/2. + (layer_id-1)*layerThickness + layerThickness/2.);
+
+    caloLayer.distance = Hcal_inner_radius + Hcal_total_dim_y/2.0 + chamber_y_offset ;
+    caloLayer.absorberThickness = Hcal_radiator_thickness ;
+
+    caloData->layers.push_back( caloLayer ) ;
+    
+    double stave_phi_offset, module_z_offset;
+    
+    //stave_phi_offset = pi/Hcal_inner_symmetry;
+    stave_phi_offset = pi*0.5;
+    for(int stave_id = 1; stave_id <= Hcal_inner_symmetry; stave_id++){
+      double phirot = stave_phi_offset+(stave_id-1)*pi/Hcal_inner_symmetry*2;
+
+      RotationZYX rot(pi/2, pi/2, 0); //phirot);
+      RotationZ rotZ(phirot);
+      RotationZYX rotAll = rotZ*rot;
+      RotationZYX rotInverse(phirot, 0, 0);
+      for(int module_id = 1; module_id <= Hcal_barrel_number_modules; module_id++){
+        module_z_offset = - Hcal_half_length + Hcal_normal_dim_z/2. + (module_id-1)*(Hcal_normal_dim_z+Hcal_modules_gap);
+	
+        Position localPos(localXPos,localYPos,module_z_offset);
+        Position newPos = rotInverse*localPos;
+
+	Transform3D tran3D(rotAll, newPos);
+	PlacedVolume pv = logicCalo.placeVolume(chamberLogical, tran3D);
+	pv.addPhysVolID("stave",stave_id).addPhysVolID("module",module_id);//.addPhysVolID("layer",layer_id);
+	DetElement layer(calo, name+_toString(stave_id,"_stave%d")+_toString(module_id,"_module%d")+_toString(layer_id,"_layer%d"), det_id);
+	layer.setPlacement(pv);
+      }
+    }
+  }
+
+  det.addExtension< LayeredCalorimeterData >( caloData ) ;
+
+  return det;
+}
+
+DECLARE_DETELEMENT(SHcalRpc02_Barrel, create_detector)