//==================================================================== // SHcalRpc02 - update fixed 8 staves to optinal staves, FU Chengdong // SHcalRpc01 - Implementation from ILCSoft's Mokka version //==================================================================== #include "DD4hep/DetFactoryHelper.h" #include "DD4hep/DD4hepUnits.h" #include "DD4hep/DetType.h" #include "DDSegmentation/TiledLayerGridXY.h" #include "DDRec/Surface.h" #include "DDRec/DetectorData.h" #include "XML/Utilities.h" using namespace std; using dd4hep::Ref_t; using dd4hep::BUILD_ENVELOPE; using dd4hep::DetElement; using dd4hep::Detector; using dd4hep::SensitiveDetector; using dd4hep::Segmentation; using dd4hep::Readout; using dd4hep::Material; using dd4hep::Volume; using dd4hep::PlacedVolume; using dd4hep::Position; using dd4hep::RotationZYX; using dd4hep::RotationZ; using dd4hep::Transform3D; using dd4hep::Box; using dd4hep::Tube; using dd4hep::PolyhedraRegular; using dd4hep::SubtractionSolid; using dd4hep::_toString; using dd4hep::pi; using dd4hep::rec::LayeredCalorimeterData; /** Construction of SHcalRpc01 detector, ported from Mokka driver SHcalRpc01.cc * * Mokka History: * - first implementation from ILCSoft * - http://cepcgit.ihep.ac.cn/cepcsoft/MokkaC */ static Ref_t create_detector(Detector& theDetector, xml_h element, SensitiveDetector sens) { cout << "--------------------------" << endl; cout << "creating SHcalRpc01_Barrel" << endl; cout << "--------------------------" << endl; xml_det_t x_det = element; string name = x_det.nameStr(); int det_id = x_det.id(); DetElement det(name, det_id); Volume envelope = dd4hep::xml::createPlacedEnvelope(theDetector, element , det ) ; envelope.setVisAttributes(theDetector, "GrayVis"); dd4hep::xml::setDetectorTypeFlag(element, det) ; if( theDetector.buildType() == BUILD_ENVELOPE ) return det ; xml_comp_t x_staves = x_det.staves(); string Hcal_radiator_material = x_staves.materialStr(); Material stavesMaterial = theDetector.material(Hcal_radiator_material); Material air = theDetector.air(); sens.setType("calorimeter"); Readout readout = sens.readout(); Segmentation seg = readout.segmentation(); dd4hep::DDSegmentation::TiledLayerGridXY* tiledSeg = dynamic_cast<dd4hep::DDSegmentation::TiledLayerGridXY*> (seg.segmentation()); assert(tiledSeg && "no TiledLayerGridXY found" ); std::vector<double> cellSizeVector = seg.segmentation()->cellDimensions(0); double cell_sizeX = cellSizeVector[0]; double cell_sizeZ = cellSizeVector[1]; double Hcal_inner_radius = theDetector.constant<double>("Hcal_inner_radius"); double Hcal_outer_radius_set = theDetector.constant<double>("Hcal_outer_radius"); double Hcal_half_length = theDetector.constant<double>("Hcal_half_length"); int Hcal_inner_symmetry = theDetector.constant<int>("Hcal_inner_symmetry"); int Hcal_outer_symmetry = 0; double Hcal_lateral_plate_thickness = theDetector.constant<double>("Hcal_lateral_structure_thickness"); double Hcal_modules_gap = theDetector.constant<double>("Hcal_modules_gap"); double Ecal_outer_radius = theDetector.constant<double>("Ecal_outer_radius"); int Hcal_barrel_number_modules = theDetector.constant<int>("Hcal_barrel_number_modules"); double hPrime = Ecal_outer_radius + theDetector.constant<double>("Hcal_Ecal_gap"); Hcal_inner_radius = hPrime / cos(pi/Hcal_inner_symmetry); double Hcal_normal_dim_z = (2*Hcal_half_length - (Hcal_barrel_number_modules-1)*Hcal_modules_gap)/Hcal_barrel_number_modules; xml_coll_t c(x_det,_U(layer)); xml_comp_t x_layer = c; int Hcal_nlayers = x_layer.repeat(); double Hcal_radiator_thickness = 0; double layerThickness = 0.0; for(xml_coll_t k(x_layer,_U(slice)); k; ++k) { xml_comp_t x_slice = k; layerThickness += x_slice.thickness(); if(x_slice.materialStr()==Hcal_radiator_material) Hcal_radiator_thickness = x_slice.thickness(); } cout << " inner symmetry = " << Hcal_inner_symmetry << endl; cout << " Hcal_inner_radius = " << hPrime << endl; cout << " cell size xy = " << cell_sizeX << " cell size z = " << cell_sizeZ << endl; cout << " layer_thickness (from slices) = " << layerThickness << " and radiator_thickness = " << Hcal_radiator_thickness << endl; double Hcal_chamber_thickness = layerThickness - Hcal_radiator_thickness; int MinNumCellsInTransvPlane = theDetector.constant<int>("Hcal_MinNumCellsInTransvPlane"); double RPC_EdgeWidth = theDetector.constant<double>("Hcal_gas_edge_width"); double RPCGazInletInnerRadius = theDetector.constant<double>("Hcal_gasInlet_inner_radius"); double RPCGazInletOuterRadius = theDetector.constant<double>("Hcal_gasInlet_outer_radius"); double RPCGazInletLength = theDetector.constant<double>("Hcal_gasInlet_length"); double RPC_PadSeparation = theDetector.constant<double>("Hcal_pad_separation"); double Hcal_spacer_thickness = theDetector.constant<double>("Hcal_spacer_thickness"); double Hcal_spacer_separation = theDetector.constant<double>("Hcal_spacer_separation"); //========== fill data for reconstruction ============================ LayeredCalorimeterData* caloData = new LayeredCalorimeterData ; caloData->layoutType = LayeredCalorimeterData::BarrelLayout ; caloData->inner_symmetry = Hcal_inner_symmetry ; caloData->outer_symmetry = Hcal_outer_symmetry ; caloData->phi0 = 0 ; // fg: also hardcoded below // general calculated parameters double AngleRatio=tan(dd4hep::pi/Hcal_inner_symmetry); double d_InnerOctoSize=2*AngleRatio*Hcal_inner_radius;//"d" double LMin = 2*RPC_EdgeWidth+cell_sizeX*MinNumCellsInTransvPlane+(MinNumCellsInTransvPlane+1)*RPC_PadSeparation; cout << "LMin=" << LMin << endl; double Ynl = 0.5*d_InnerOctoSize - Hcal_nlayers*layerThickness/tan(dd4hep::twopi/Hcal_inner_symmetry); double Hcal_outer_radius = sqrt((LMin-Ynl)*(LMin-Ynl) + (hPrime + Hcal_nlayers*layerThickness)*(hPrime + Hcal_nlayers*layerThickness)); if(Hcal_outer_radius!=Hcal_outer_radius_set){ cout << "calculated Hcal_outer_radius != input, will impact HcalEndcap and HcalEndcapRing. Hcal_outer_radius = " << Hcal_outer_radius << " but set as " << Hcal_outer_radius_set << " difference = " << Hcal_outer_radius-Hcal_outer_radius_set << endl; cout << "if Coil put inside of Hcal, it is possible!" << endl; } /// extent of the calorimeter in the r-z-plane [ rmin, rmax, zmin, zmax ] in cm. caloData->extent[0] = Hcal_inner_radius ; caloData->extent[1] = Hcal_outer_radius ; caloData->extent[2] = 0. ; // Barrel zmin is "0" by default. caloData->extent[3] = Hcal_half_length ; double Hcal_total_dim_y = Hcal_outer_radius - hPrime; // the y_dim1_for_z kept as the original value in TDR double Hcal_regular_chamber_dim_z = Hcal_normal_dim_z - 2 *(Hcal_lateral_plate_thickness); //int N_cells_z = static_cast <int> ( (Hcal_regular_chamber_dim_z - 2*RPC_EdgeWidth - RPC_PadSeparation) / (Hcal_cell_dim_x + RPC_PadSeparation) ); // Hcal_cell_dim_z=(Hcal_regular_chamber_dim_z-RPC_PadSeparation )/N_cells_z // - RPC_PadSeparation; Tube solidCaloTube(0, Hcal_outer_radius, Hcal_half_length); PolyhedraRegular solidOctogon(Hcal_inner_symmetry, 0, hPrime, 4*Hcal_half_length); RotationZYX rotOctogon(dd4hep::twopi/2/Hcal_inner_symmetry,0,0); SubtractionSolid solidCalo(solidCaloTube, solidOctogon, rotOctogon); Volume logicCalo(name+"_radiator", solidCalo, stavesMaterial); logicCalo.setAttributes(theDetector,x_det.regionStr(),x_det.limitsStr(),x_det.visStr()); PlacedVolume calo_pv = envelope.placeVolume(logicCalo, Position(0,0,0)); DetElement calo(det, "envelope", det_id); calo.setPlacement(calo_pv); if(tiledSeg) tiledSeg->setOffsetY(-(Hcal_regular_chamber_dim_z/2.-RPC_EdgeWidth)+0.5*cell_sizeZ); for(int layer_id=1; layer_id<=Hcal_nlayers; layer_id++){ double yn = sqrt(Hcal_outer_radius*Hcal_outer_radius - (hPrime + layer_id*layerThickness)*(hPrime + layer_id*layerThickness)); double Yn = 0.5*d_InnerOctoSize - layer_id*layerThickness/tan(dd4hep::twopi/Hcal_inner_symmetry); double halfX = Hcal_chamber_thickness/2.; double halfY = (yn+Yn)/2.; LayeredCalorimeterData::Layer caloLayer ; caloLayer.cellSize0 = cell_sizeX; caloLayer.cellSize1 = cell_sizeZ; //double halfZ = Hcal_normal_dim_z / 2.; double halfZ = Hcal_regular_chamber_dim_z / 2.; double localXPos = hPrime + Hcal_radiator_thickness + Hcal_chamber_thickness/2. + (layer_id-1)*layerThickness; double localYPos = -Yn + 0.5*(Yn + yn); Box chamberSolid(halfY, halfZ, halfX); string chamberLogical_name = name+_toString(layer_id,"_layer%d"); Volume chamberLogical(chamberLogical_name, chamberSolid, air); chamberLogical.setAttributes(theDetector, x_layer.regionStr(), x_layer.limitsStr(), x_layer.visStr()); if(tiledSeg) tiledSeg->setLayerOffsetX((-(halfY-RPC_EdgeWidth)+0.5*cell_sizeX)*2/cell_sizeX); string layer_name = name+_toString(layer_id,"_layer%d"); double nRadiationLengths=0.; double nInteractionLengths=0.; double thickness_sum=0; nRadiationLengths = Hcal_radiator_thickness/(stavesMaterial.radLength()); nInteractionLengths = Hcal_radiator_thickness/(stavesMaterial.intLength()); double slice_pos_z = -halfX; int slice_number = 0; for(xml_coll_t k(x_layer,_U(slice)); k; ++k) { xml_comp_t x_slice = k; if(x_slice.materialStr()==Hcal_radiator_material) continue; string slice_name = layer_name + _toString(slice_number,"_slice%d"); double slice_thickness = x_slice.thickness(); Material slice_material = theDetector.material(x_slice.materialStr()); if(layer_id==1) cout<<" Layer_slice: "<< slice_name<<" slice_thickness: "<< slice_thickness<< endl; slice_pos_z += slice_thickness/2.; nRadiationLengths += slice_thickness/(2.*slice_material.radLength()); nInteractionLengths += slice_thickness/(2.*slice_material.intLength()); thickness_sum += slice_thickness/2; // Slice volume & box Box sliceSolid(halfY, halfZ, slice_thickness/2.); Volume sliceVol(slice_name, sliceSolid, slice_material); if ( x_slice.isSensitive() ) { sliceVol.setSensitiveDetector(sens); if(RPC_EdgeWidth>0){ double RPC_GazInlet_In_Z = halfZ - RPC_EdgeWidth - RPCGazInletOuterRadius; double RPC_GazInlet_In_Y = halfY - RPC_EdgeWidth/2; double RPC_GazInlet_Out_Z = -RPC_GazInlet_In_Z; double RPC_GazInlet_Out_Y = RPC_GazInlet_In_Y; string mateialName = x_slice.attr<string>(_Unicode(edge_material)); Material edge_material = theDetector.material(mateialName); Box solidRPCEdge1(halfY, halfZ, slice_thickness/2.); Box solidRPCEdge2(halfY-RPC_EdgeWidth, halfZ-RPC_EdgeWidth, slice_thickness/2.); SubtractionSolid solidRPCEdge(solidRPCEdge1, solidRPCEdge2, Position(0,0,0)); Volume logicRPCEdge(slice_name+"_edge", solidRPCEdge, edge_material); logicRPCEdge.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr()); sliceVol.placeVolume(logicRPCEdge); RotationZYX rotGaz(0, pi/2., 0); Tube solidRPCGazInlet(RPCGazInletInnerRadius,RPCGazInletOuterRadius,RPC_EdgeWidth/*RPCGazInletLength*//2); Volume logicRPCGazInlet(slice_name+"_GazInlet", solidRPCGazInlet, edge_material); logicRPCGazInlet.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr()); logicRPCEdge.placeVolume(logicRPCGazInlet, Transform3D(rotGaz, Position(RPC_GazInlet_In_Y,RPC_GazInlet_In_Z, 0))); logicRPCEdge.placeVolume(logicRPCGazInlet, Transform3D(rotGaz, Position(RPC_GazInlet_Out_Y,RPC_GazInlet_Out_Z, 0))); Tube solidRPCGazInsideInlet(0,RPCGazInletInnerRadius,RPC_EdgeWidth/*RPCGazInletLength*//2); Volume logicRPCGazInsideInlet(slice_name+"_GazInsideInlet", solidRPCGazInsideInlet, slice_material); logicRPCGazInsideInlet.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),"SeeThrough"); logicRPCEdge.placeVolume(logicRPCGazInsideInlet, Transform3D(rotGaz, Position(RPC_GazInlet_In_Y,RPC_GazInlet_In_Z, 0))); logicRPCEdge.placeVolume(logicRPCGazInsideInlet, Transform3D(rotGaz,Position(RPC_GazInlet_Out_Y,RPC_GazInlet_Out_Z, 0))); } if(Hcal_spacer_thickness>0){ Tube solidRPCSpacer(0,Hcal_spacer_thickness/2,slice_thickness/2); Material space_material = theDetector.material(x_slice.attr<string>(_Unicode(spacer_material))); Volume logicRPCSpacer(slice_name+"_spacer", solidRPCSpacer, space_material); logicRPCSpacer.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr()); RotationZYX rotSpacer(0, 0, 0); double gap_hZ = halfZ-RPC_EdgeWidth; double gap_hY = halfY-RPC_EdgeWidth; int y_number_of_separations = (int)(2*gap_hY/Hcal_spacer_separation); int z_number_of_separations = (int)(2*gap_hZ/Hcal_spacer_separation); double y_lateral_space = (2*gap_hY - y_number_of_separations*Hcal_spacer_separation)/2; double z_lateral_space = (2*gap_hZ - z_number_of_separations*Hcal_spacer_separation)/2; if(y_lateral_space < Hcal_spacer_thickness/2.){ y_number_of_separations = (int)((2*gap_hY-Hcal_spacer_thickness)/Hcal_spacer_separation); y_lateral_space = (2*gap_hY - y_number_of_separations*Hcal_spacer_separation)/2; } if(z_lateral_space < Hcal_spacer_thickness/2.){ z_number_of_separations = (int)((2*gap_hZ-Hcal_spacer_thickness)/Hcal_spacer_separation); z_lateral_space = (2*gap_hZ - z_number_of_separations*Hcal_spacer_separation)/2; } for(int y_counter = 0; y_counter <=y_number_of_separations; y_counter++){ double SpacerY = gap_hY - y_lateral_space - y_counter*Hcal_spacer_separation; for(int z_counter = 0; z_counter <=z_number_of_separations; z_counter++){ double SpacerZ = gap_hZ - z_lateral_space - z_counter*Hcal_spacer_separation; PlacedVolume space_pv = sliceVol.placeVolume(logicRPCSpacer, Transform3D(rotSpacer, Position(SpacerY,SpacerZ,0))); } } } caloLayer.inner_nRadiationLengths = nRadiationLengths; caloLayer.inner_nInteractionLengths = nInteractionLengths; caloLayer.inner_thickness = thickness_sum; if(layer_id==1) cout<<"Hcal_Barrel: inner_thickness= "<<thickness_sum<<endl; //Store readout gasgap thickness caloLayer.sensitive_thickness = slice_thickness; //Reset counters to measure "outside" quantitites nRadiationLengths=0.; nInteractionLengths=0.; thickness_sum = 0.; sliceVol.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),"SeeThrough"); } else{ sliceVol.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr()); } nRadiationLengths += slice_thickness/(2.*slice_material.radLength()); nInteractionLengths += slice_thickness/(2.*slice_material.intLength()); thickness_sum += slice_thickness/2; // slice PlacedVolume PlacedVolume slice_phv = chamberLogical.placeVolume(sliceVol,Position(0,0,slice_pos_z)); if ( x_slice.isSensitive() ) { int slice_id = (layer_id > Hcal_nlayers)? 1:-1; slice_phv.addPhysVolID("layer",layer_id).addPhysVolID("slice",slice_id); } DetElement sliceDetE(layer_name,_toString(slice_number,"slice%d"),x_det.id()); sliceDetE.setPlacement(slice_phv); // Increment x position for next slice. slice_pos_z += slice_thickness/2.; // Increment slice number. ++slice_number; } caloLayer.outer_nRadiationLengths = nRadiationLengths; caloLayer.outer_nInteractionLengths = nInteractionLengths; caloLayer.outer_thickness = thickness_sum; if(layer_id==1) cout << "Hcal_Barrel: outer_thickness= " << thickness_sum << endl; double chamber_y_offset = -(-Hcal_total_dim_y/2. + (layer_id-1)*layerThickness + layerThickness/2.); caloLayer.distance = Hcal_inner_radius + Hcal_total_dim_y/2.0 + chamber_y_offset ; caloLayer.absorberThickness = Hcal_radiator_thickness ; caloData->layers.push_back( caloLayer ) ; double stave_phi_offset, module_z_offset; //stave_phi_offset = pi/Hcal_inner_symmetry; stave_phi_offset = pi*0.5; for(int stave_id = 1; stave_id <= Hcal_inner_symmetry; stave_id++){ double phirot = stave_phi_offset+(stave_id-1)*pi/Hcal_inner_symmetry*2; RotationZYX rot(pi/2, pi/2, 0); //phirot); RotationZ rotZ(phirot); RotationZYX rotAll = rotZ*rot; RotationZYX rotInverse(phirot, 0, 0); for(int module_id = 1; module_id <= Hcal_barrel_number_modules; module_id++){ module_z_offset = - Hcal_half_length + Hcal_normal_dim_z/2. + (module_id-1)*(Hcal_normal_dim_z+Hcal_modules_gap); Position localPos(localXPos,localYPos,module_z_offset); Position newPos = rotInverse*localPos; Transform3D tran3D(rotAll, newPos); PlacedVolume pv = logicCalo.placeVolume(chamberLogical, tran3D); pv.addPhysVolID("stave",stave_id).addPhysVolID("module",module_id);//.addPhysVolID("layer",layer_id); DetElement layer(calo, name+_toString(stave_id,"_stave%d")+_toString(module_id,"_module%d")+_toString(layer_id,"_layer%d"), det_id); layer.setPlacement(pv); } } } det.addExtension< LayeredCalorimeterData >( caloData ) ; return det; } DECLARE_DETELEMENT(SHcalRpc02_Barrel, create_detector)