Newer
Older
//*************************************************************************
//* =====================
//* TKalDetCradle Class
//* =====================
//*
//* (Description)
//* A singleton class to hold information of detector system
//* used in Kalman filter classes.
//* (Requires)
//* TObjArray
//* TVKalDetector
//* (Provides)
//* class TKalDetCradle
//* (Update Recored)
//* 2005/02/23 A.Yamaguchi Original version.
//* 2005/08/14 K.Fujii Removed CalcTable(), GetMeasLayerTable(),
//* GetPhiTable(), and GetDir() and added
//* Transport() to do their functions.
//* 2010/04/06 K.Fujii Modified Transport() to allow a 1-dim hit,
//* for which pivot is at the expected hit.
//*
//*************************************************************************
#include "TKalDetCradle.h" // from KalTrackLib
#include "TVMeasLayer.h" // from KalTrackLib
#include "TVKalDetector.h" // from KalTrackLib
#include "TKalTrackSite.h" // from KalTrackLib
#include "TKalTrackState.h" // from KalTrackLib
#include "TVSurface.h" // from GeomLib
#include <memory> // from STL
#include <iostream> // from STL
ClassImp(TKalDetCradle)
//_________________________________________________________________________
// ----------------------------------
// Ctors and Dtor
// ----------------------------------
TKalDetCradle::TKalDetCradle(Int_t n)
: TObjArray(n), fIsMSON(kTRUE), fIsDEDXON(kTRUE),
fDone(kFALSE), fIsClosed(kFALSE)
{
}
TKalDetCradle::~TKalDetCradle()
{
//std::cout << "TKalDetCradle::~TKalDetCradle() " << this << " " << GetEntries() << std::endl;
std::map<TAttElement*, int> det_nelement;
TIter next(this);
TObject *mlp = 0;
while ((mlp = next())) {
TAttElement* det = const_cast<TAttElement*>(&(dynamic_cast<TAttElement *>(mlp)->GetParent(kFALSE)));
if(det_nelement.find(det)!=det_nelement.end()) det_nelement[det]++;
else det_nelement[det] = 1;
}
for (auto it : det_nelement) {
delete it.first;
}
}
//_________________________________________________________________________
// ----------------------------------
// Utility Methods
// ----------------------------------
//_________________________________________________________________________
// -----------------
// Install
// -----------------
// installs a sub-detector into this cradle.
//
void TKalDetCradle::Install(TVKalDetector &det)
{
if (IsClosed()) {
std::cerr << ">>>> Error!! >>>> TKalDetCradle::Install" << std::endl
<< " Cradle already closed. Abort!!" << std::endl;
abort();
}
TIter next(&det);
TObject *mlp = 0; // measment layer pointer
while ((mlp = next())) {
Add(mlp);
dynamic_cast<TAttElement *>(mlp)->SetParentPtr(&det);
det.SetParentPtr(this);
}
fDone = kFALSE;
}
void TKalDetCradle::Transport(const TKalTrackSite &from, // site from
TKalTrackSite &to, // site to
TKalMatrix &sv, // state vector
TKalMatrix &F, // propagator matrix
TKalMatrix &Q) // process noise matrix
{
const TVMeasLayer& ml_to = to.GetHit().GetMeasLayer() ;
TVector3 x0;
this->Transport(from, ml_to, x0, sv, F, Q ) ;
double bfield = to.GetHit().GetBfield();
TVTrack* trk = 0;
if (bfield==0) trk = new TStraightTrack(sv, x0);
else trk = new THelicalTrack(sv, x0, bfield);
// ---------------------------------------------------------------------
// Move pivot from last expected hit to actural hit at site to
// ---------------------------------------------------------------------
if (to.GetDimension() > 1) {
double fid = 0.;
Int_t sdim = sv.GetNrows(); // number of track parameters
TKalMatrix DF(sdim, sdim); // propagator matrix segment
trk->MoveTo(to.GetPivot(), fid, &DF); // move pivot to actual hit (to)
F = DF * F; // update F accordingly
} else {
to.SetPivot(x0); // if it is a 1-dim hit
}
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
}
//
//
//
//_________________________________________________________________________
// -----------------
// Transport
// -----------------
// transports state (sv) from site (from) to layer (ml_to), taking into
// account multiple scattering and energy loss and updates state (sv),
// fills pivot in x0, propagator matrix (F), and process noise matrix (Q).
//
int TKalDetCradle::Transport(const TKalTrackSite &from, // site from
const TVMeasLayer &ml_to, // layer to reach
TVector3 &x0, // pivot for sv
TKalMatrix &sv, // state vector
TKalMatrix &F, // propagator matrix
TKalMatrix &Q) // process noise matrix
{
// ---------------------------------------------------------------------
// Sort measurement layers in this cradle if not
// ---------------------------------------------------------------------
if (!fDone) Update();
// ---------------------------------------------------------------------
// Locate sites from and to in this cradle
// ---------------------------------------------------------------------
Int_t fridx = from.GetHit().GetMeasLayer().GetIndex(); // index of site from
Int_t toidx = ml_to.GetIndex(); // index of layer to
Int_t di = fridx > toidx ? -1 : 1; // layer increment
std::auto_ptr<TVTrack> help(&static_cast<TKalTrackState &>
(from.GetCurState()).CreateTrack()); // tmp track
TVTrack &hel = *help;
//=====================
// FIXME
//=====================
TVector3 xfrom = from.GetPivot(); // get the referenece point
TVector3 xto; // reference point at destination to be returned by CalcXingPointWith
Double_t fito = 0; // deflection angle to destination to be returned by CalcXingPointWith
const TVSurface *sfp = dynamic_cast<const TVSurface *>(&ml_to);// surface at destination
sfp->CalcXingPointWith(hel, xto, fito, 0); // the default tolerance is used
// as mode is 0 here the closest point crossing point is taken
// this means that if we are at the top of a looping track
// and the point to which we want to move is on the other side of
// the loop but has a lower radius the transport will move down
// through all layers and segfault on reaching index -1
// if( does_cross < 1 ) return does_cross ;
TMatrixD dxdphi = hel.CalcDxDphi(fito); // tangent vector at destination surface
TVector3 dxdphiv(dxdphi(0,0),dxdphi(1,0),dxdphi(2,0)); // convert matirix diagonal to vector
// Double_t cpa = hel.GetKappa(); // get pt
Bool_t isout = -fito*dxdphiv.Dot(sfp->GetOutwardNormal(xto)) < 0 ? kTRUE : kFALSE; // out-going or in-coming at the destination surface
//=====================
// ENDFIXME
//=====================
TVector3 xx; // expected hit position vector
Double_t fid = 0.; // deflection angle from the last hit
Int_t sdim = sv.GetNrows(); // number of track parameters
F.UnitMatrix(); // set the propagator matrix to the unit matrix
Q.Zero(); // zero the noise matrix
TKalMatrix DF(sdim, sdim); // propagator matrix segment
// ---------------------------------------------------------------------
// Loop over layers and transport sv, F, and Q step by step
// ---------------------------------------------------------------------
Int_t ifr = fridx; // set index to the index of the intitial starting layer
// here we make first make sure that the helix is at the crossing point of the current surface.
// this is necessary to ensure that the material is only accounted for between fridx and toidx
// otherwise it is possible to have inconsistencies with material treatment.
// loop until we reach the index toidx, which is the surface we need to reach
for (Int_t ito=fridx; (di>0 && ito<=toidx)||(di<0 && ito>=toidx); ito += di) {
Double_t fid_temp = fid; // deflection angle from the last layer crossing
int mode = ito!=fridx ? di : 0; // need to move to the from site as the helix may not be on the crossing point yet, meaning that the eloss and ms will be incorrectely attributed ...
if (dynamic_cast<TVSurface *>(At(ito))->CalcXingPointWith(hel, xx, fid, mode)) { // if we have a crossing point at this surface, note di specifies if we are moving forwards or backwards
//=====================
// FIXME
//=====================
static const Double_t kMergin = 1.0;
// if the distance from the current crossing point to the starting point - kMergin(1mm) is greater than the distance from the destination to the starting point
// this is needed to skip crossing points which come from the far side of the IP, for a cylinder this would not be a problem
// but for the bounded planes it is perfectly posible due to the sorting in R
// reset the deflection angle and skip this layer
// this would at stop layers being added which are too far away but I am not sure how this will work with the problem described above.
if( (xx-xfrom).Mag() - kMergin > (xto-xfrom).Mag() ){
fid = fid_temp;
continue ;
}
//=====================
// ENDFIXME
//=====================
const TVMeasLayer &ml = *dynamic_cast<TVMeasLayer *>(At(ifr)); // get the last layer
TKalMatrix Qms(sdim, sdim);
if (IsMSOn()&& ito!=fridx ){
ml.CalcQms(isout, hel, fid, Qms); // Qms for this step, using the fact that the material was found to be outgoing or incomming above, and the distance from the last layer
}
hel.MoveTo(xx, fid, &DF); // move the helix to the present crossing point, DF will simply have its values overwritten so it could be explicitly set to unity here
if (sdim == 6) DF(5, 5) = 1.; // t0 stays the same
F = DF * F; // update F
TKalMatrix DFt = TKalMatrix(TMatrixD::kTransposed, DF);
Q = DF * (Q + Qms) * DFt; // transport Q to the present crossing point
if (IsDEDXOn() && ito!=fridx) {
hel.PutInto(sv); // copy hel to sv
// whether the helix is moving forwards or backwards is calculated using the sign of the charge and the sign of the deflection angle
// Bool_t isfwd = ((cpa > 0 && df < 0) || (cpa <= 0 && df > 0)) ? kForward : kBackward; // taken from TVMeasurmentLayer::GetEnergyLoss not df = fid
sv(2,0) += ml.GetEnergyLoss(isout, hel, fid); // correct for dE/dx, returns delta kappa i.e. the change in pt
hel.SetTo(sv, hel.GetPivot()); // save sv back to hel
}
ifr = ito; // for the next iteration set the "previous" layer to the current layer moved to
} else { // if there is no crossing point reset fid to its original value:
fid = fid_temp ;
}
} // end of loop over surfaces
// // ---------------------------------------------------------------------
// // Move pivot to crossing point with layer to move to
// // ---------------------------------------------------------------------
// dynamic_cast<const TVSurface *>(&ml_to)->CalcXingPointWith(hel, xx, fid);
// hel.MoveTo(xx, fid, &DF); // move pivot to expected hit, DF will simply have its values overwritten so it could be explicitly set to unity here
// F = DF * F; // update F accordingly
x0 = hel.GetPivot() ;
hel.PutInto(sv); // save updated hel to sv
return 0;
}
//_________________________________________________________________________
// -----------------
// Update
// -----------------
// sorts meaurement layers according to layer's sorting policy
// and puts index to layers from inside to outside.
//
void TKalDetCradle::Update()
{
fDone = kTRUE;
UnSort(); // unsort
Sort(); // sort layers according to sorting policy
TIter next(this);
TVMeasLayer *mlp = 0;
Int_t i = 0;
while ((mlp = dynamic_cast<TVMeasLayer *>(next()))) {
mlp->SetIndex(i++);
}
}