Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/DD4hepUnits.h"
#include "DD4hep/DetType.h"
#include "DDRec/Surface.h"
#include "DDRec/DetectorData.h"
#include "XML/Utilities.h"
#include <cmath>
using namespace std;
using dd4hep::Box;
using dd4hep::DetElement;
using dd4hep::Material;
using dd4hep::Position;
using dd4hep::RotationY;
using dd4hep::RotationZYX;
using dd4hep::Transform3D;
using dd4hep::Rotation3D;
using dd4hep::Volume;
using dd4hep::_toString;
using dd4hep::rec::volSurfaceList;
using dd4hep::rec::ZPlanarData;
using dd4hep::mm;
static dd4hep::Ref_t create_element(dd4hep::Detector& theDetector, xml_h e, dd4hep::SensitiveDetector sens) {
xml_det_t x_det = e;
Material air = theDetector.air();
int det_id = x_det.id();
string name = x_det.nameStr();
DetElement otkendcap(name, det_id);
Volume envelope = dd4hep::xml::createPlacedEnvelope(theDetector, e, otkendcap);
dd4hep::xml::setDetectorTypeFlag(e, otkendcap) ;
if(theDetector.buildType()==dd4hep::BUILD_ENVELOPE) return otkendcap;
envelope.setVisAttributes(theDetector.visAttributes("SeeThrough"));
if (x_det.hasAttr(_U(sensitive))) {
xml_dim_t sd_typ = x_det.child(_U(sensitive));
sens.setType(sd_typ.typeStr());
}
else {
sens.setType("tracker");
}
std::cout << " ** building SiTracker_otkendcap ..." << std::endl ;
dd4hep::rec::ZPlanarData* zPlanarData = new dd4hep::rec::ZPlanarData;
//*****************************************************************//
// Reading parameters from the .xml file
//*****************************************************************//
//fetch the geometry parameters
const double inner_radius = theDetector.constant<double>("OTKEndCapBarrel_inner_radius");
const double outer_radius = theDetector.constant<double>("OTKEndCap_outer_radius");
const double total_length = theDetector.constant<double>("OTKEndCap_half_length")*2.;
const int total_sections = theDetector.constant<int>("OTKEndCap_total_sections");
const double deg = theDetector.constant<double>("OTKEndCap_piece_deg")*dd4hep::degree;
const double piece_number = theDetector.constant<double>("OTKEndCap_piece_num");
const double deg_interval = 360 / piece_number * dd4hep::degree;
const double r0 = theDetector.constant<double>("OTKEndCap_r0");
const double r1 = theDetector.constant<double>("OTKEndCap_r1");
const double r2 = theDetector.constant<double>("OTKEndCap_r2");
const double r3 = theDetector.constant<double>("OTKEndCap_r3");
const double r4 = theDetector.constant<double>("OTKEndCap_r4");
const double r5 = theDetector.constant<double>("OTKEndCap_r5");
const double r6 = theDetector.constant<double>("OTKEndCap_r6");
const double r7 = theDetector.constant<double>("OTKEndCap_r7");
const double r8 = theDetector.constant<double>("OTKEndCap_r8");
const double r9 = theDetector.constant<double>("OTKEndCap_r9");
const double r10 = theDetector.constant<double>("OTKEndCap_r10");
const int asic_num_0 = theDetector.constant<int>("OTKEndCap_asic_num_0");
const int asic_num_1 = theDetector.constant<int>("OTKEndCap_asic_num_1");
const int asic_num_2 = theDetector.constant<int>("OTKEndCap_asic_num_2");
const int asic_num_3 = theDetector.constant<int>("OTKEndCap_asic_num_3");
const int asic_num_4 = theDetector.constant<int>("OTKEndCap_asic_num_4");
const int asic_num_5 = theDetector.constant<int>("OTKEndCap_asic_num_5");
const int asic_num_6 = theDetector.constant<int>("OTKEndCap_asic_num_6");
const int asic_num_7 = theDetector.constant<int>("OTKEndCap_asic_num_7");
const int asic_num_8 = theDetector.constant<int>("OTKEndCap_asic_num_8");
const int asic_num_9 = theDetector.constant<int>("OTKEndCap_asic_num_9");
const int module_num_0 = theDetector.constant<int>("OTKEndCap_module_num_0");
const int module_num_1 = theDetector.constant<int>("OTKEndCap_module_num_1");
const int module_num_2 = theDetector.constant<int>("OTKEndCap_module_num_2");
const int module_num_3 = theDetector.constant<int>("OTKEndCap_module_num_3");
const int module_num_4 = theDetector.constant<int>("OTKEndCap_module_num_4");
const int module_num_5 = theDetector.constant<int>("OTKEndCap_module_num_5");
const int module_num_6 = theDetector.constant<int>("OTKEndCap_module_num_6");
const int module_num_7 = theDetector.constant<int>("OTKEndCap_module_num_7");
const int module_num_8 = theDetector.constant<int>("OTKEndCap_module_num_8");
const int module_num_9 = theDetector.constant<int>("OTKEndCap_module_num_9");
std::cout << "inner_radius: " << inner_radius/mm << "mm" << std::endl;
std::cout << "outer_radius: " << outer_radius/mm << "mm" << std::endl;
std::cout << "total_length: " << total_length/mm << "mm" << std::endl;
std::cout << "total_sections: " << total_sections << std::endl;
std::cout << "deg: " << deg/dd4hep::degree << "deg" << std::endl;
std::cout << "piece_number: " << piece_number << std::endl;
std::cout << "deg interval: " << deg_interval/dd4hep::degree << "deg" << std::endl;
std::cout << "r0: " << r0/mm << "mm" << std::endl;
std::cout << "r1: " << r1/mm << "mm" << std::endl;
std::cout << "r2: " << r2/mm << "mm" << std::endl;
std::cout << "r3: " << r3/mm << "mm" << std::endl;
std::cout << "r4: " << r4/mm << "mm" << std::endl;
std::cout << "r5: " << r5/mm << "mm" << std::endl;
std::cout << "r6: " << r6/mm << "mm" << std::endl;
std::cout << "r7: " << r7/mm << "mm" << std::endl;
std::cout << "r8: " << r8/mm << "mm" << std::endl;
std::cout << "r9: " << r9/mm << "mm" << std::endl;
std::cout << "r10: " << r10/mm << "mm" << std::endl;
std::cout << "asic_num_0: " << asic_num_0 << std::endl;
std::cout << "asic_num_1: " << asic_num_1 << std::endl;
std::cout << "asic_num_2: " << asic_num_2 << std::endl;
std::cout << "asic_num_3: " << asic_num_3 << std::endl;
std::cout << "asic_num_4: " << asic_num_4 << std::endl;
std::cout << "asic_num_5: " << asic_num_5 << std::endl;
std::cout << "asic_num_6: " << asic_num_6 << std::endl;
std::cout << "asic_num_7: " << asic_num_7 << std::endl;
std::cout << "asic_num_8: " << asic_num_8 << std::endl;
std::cout << "asic_num_9: " << asic_num_9 << std::endl;
std::cout << "module_num_0: " << module_num_0 << std::endl;
std::cout << "module_num_1: " << module_num_1 << std::endl;
std::cout << "module_num_2: " << module_num_2 << std::endl;
std::cout << "module_num_3: " << module_num_3 << std::endl;
std::cout << "module_num_4: " << module_num_4 << std::endl;
std::cout << "module_num_5: " << module_num_5 << std::endl;
std::cout << "module_num_6: " << module_num_6 << std::endl;
std::cout << "module_num_7: " << module_num_7 << std::endl;
std::cout << "module_num_8: " << module_num_8 << std::endl;
std::cout << "module_num_9: " << module_num_9 << std::endl;
double r[11] = {r0,
r1,
r2,
r3,
r4,
r5,
r6,
r7,
r8,
r9,
r10};
int asic_num[10] = {asic_num_0,
asic_num_1,
asic_num_2,
asic_num_3,
asic_num_4,
asic_num_5,
asic_num_6,
asic_num_7,
asic_num_8,
asic_num_9};
int module_num[10] = {module_num_0,
module_num_1,
module_num_2,
module_num_3,
module_num_4,
module_num_5,
module_num_6,
module_num_7,
module_num_8,
module_num_9};
//fetch the display parameters
xml_comp_t x_display(x_det.child(_Unicode(display)));
std::string supportVis = x_display.attr<string>(_Unicode(support));
std::string sensEnvVis = x_display.attr<string>(_Unicode(sens_env));
std::string sensVis = x_display.attr<string>(_Unicode(sens));
std::string deadsensVis = x_display.attr<string>(_Unicode(deadsensor));
std::string pcbVis = x_display.attr<string>(_Unicode(pcb));
std::string asicVis = x_display.attr<string>(_Unicode(asic));
//fetch the support parameters
xml_comp_t x_support(x_det.child(_Unicode(support)));
double support_thickness = x_support.attr<double>(_Unicode(thickness));
double support_inner_radius = x_support.attr<double>(_Unicode(inner_radius));
double support_outer_radius = x_support.attr<double>(_Unicode(outer_radius));
Material support_mat = theDetector.material(x_support.attr<string>(_Unicode(mat)));
std::cout << "support_thickness: " << support_thickness/mm << " mm" << std::endl;
std::cout << "support_inner_radius: " << support_inner_radius/mm << " mm" << std::endl;
std::cout << "support_outer_radius: " << support_outer_radius/mm << " mm" << std::endl;
for(xml_coll_t layer_i(x_det,_U(layer));layer_i;++layer_i){
//fetch the overall parameters of this layer
xml_comp_t x_layer(layer_i);
dd4hep::PlacedVolume pv;
int layer_id = x_layer.attr<int>(_Unicode(id));
double layer_thickness = x_layer.attr<double>(_Unicode(thickness));
double layer_zpos = x_layer.attr<double>(_Unicode(zpos));
std::cout << "layer_id: " << layer_id << std::endl;
std::cout << "layer_thickness: " << layer_thickness/mm << "mm" << std::endl;
std::cout << "layer_zpos: " << layer_zpos/mm << "mm" << std::endl;
//fetch the sensor parameters
xml_comp_t x_sensor(x_layer.child(_Unicode(sensor)));
double sensor_dead_gap = x_sensor.attr<double>(_Unicode(gap));
double sensor_thickness = x_sensor.attr<double>(_Unicode(thickness));
double sensor_dead_width = x_sensor.attr<double>(_Unicode(dead_width));
Material sensor_mat = theDetector.material(x_sensor.attr<string>(_Unicode(mat)));
//fetch parameters for the pcb and asic parts
xml_comp_t x_pcb(x_layer.child(_Unicode(pcb)));
double pcb_thickness = x_pcb.attr<double>(_Unicode(thickness));
double pcb_rlength = x_pcb.attr<double>(_Unicode(rlength));
double pcb_rgap = x_pcb.attr<double>(_Unicode(rgap));
Material pcb_mat = theDetector.material(x_pcb.attr<string>(_Unicode(mat)));
xml_comp_t x_asic(x_layer.child(_Unicode(asic)));
double asic_thickness = x_asic.attr<double>(_Unicode(thickness));
double asic_width = x_asic.attr<double>(_Unicode(width));
double asic_rlength = x_asic.attr<double>(_Unicode(rlength));
double asic_rgap = x_asic.attr<double>(_Unicode(rgap));
Material asic_mat = theDetector.material(x_asic.attr<string>(_Unicode(mat)));
std::cout << "sensor_dead_gap: " << sensor_dead_gap/mm << " mm" << std::endl;
std::cout << "sensor_thickness: " << sensor_thickness/mm << " mm" << std::endl;
std::cout << "sensor_dead_width: " << sensor_dead_width/mm << " mm" << std::endl;
std::cout << "pcb_thickness: " << pcb_thickness/mm << " mm" << std::endl;
std::cout << "pcb_rlength: " << pcb_rlength/mm << " mm" << std::endl;
std::cout << "pcb_rgap: " << pcb_rgap/mm << " mm" << std::endl;
std::cout << "asic_thickness: " << asic_thickness/mm << " mm" << std::endl;
std::cout << "asic_width: " << asic_width/mm << " mm" << std::endl;
std::cout << "asic_rlength: " << asic_rlength/mm << " mm" << std::endl;
std::cout << "asic_rgap: " << asic_rgap/mm << " mm" << std::endl;
//*****************************************************************//
// Creating objects
//*****************************************************************//
//layer definition
std::string layer_name = dd4hep::_toString(layer_id, "layer_%d");
dd4hep::Assembly layer_assembly(layer_name);
pv = envelope.placeVolume(layer_assembly);
dd4hep::DetElement layerDE(otkendcap, layer_name, x_det.id());
layerDE.setPlacement(pv);
//create piece envelope logical volume
dd4hep::Tube PieceEnvSolid( inner_radius,
outer_radius,
layer_thickness / 2.0,
0.,
deg);
Volume PieceEnvLogical( name + dd4hep::_toString(layer_id, "_PieceEnvLogical_%02d"),
PieceEnvSolid,
air);
//create and place support logical volume
dd4hep::Tube SupportSolid( support_inner_radius,
support_outer_radius,
support_thickness / 2.0,
0.,
deg);
Volume SupportLogical( name + dd4hep::_toString(layer_id, "_SupportLogical_%02d"),
SupportSolid,
support_mat);
SupportLogical.setVisAttributes(theDetector.visAttributes(supportVis));
pv = PieceEnvLogical.placeVolume(SupportLogical, Position(0, 0, (-layer_thickness + support_thickness) / 2.0));
//create sensor envelope logical volume
dd4hep::Tube SensorEnvSolid( inner_radius,
outer_radius,
(sensor_thickness + pcb_thickness + asic_thickness) / 2.0,
0.,
deg);
Volume SensorEnvLogical( name + dd4hep::_toString(layer_id, "SensorEnvLogical_%02d"),
SensorEnvSolid,
air);
SensorEnvLogical.setVisAttributes(theDetector.visAttributes(sensEnvVis));
//create and place utilities in each ring
std::vector<dd4hep::PlacedVolume> sensor_pv;
std::vector<dd4hep::rec::VolPlane> sensor_surf;
dd4hep::rec::Vector3D o(0., 0., 0.);
dd4hep::rec::Vector3D u(0., 1., 0.);
dd4hep::rec::Vector3D v(1., 0., 0.);
dd4hep::rec::Vector3D n(0., 0., 1.);
double inner_thick = sensor_thickness/2.0;
double outer_thick = (support_thickness + sensor_thickness)/2.0;
double ring_inner_radius;
double ring_outer_radius = r[0] - sensor_dead_gap;
int ring_asic_number;
int ring_module_number;
double ring_dead_angle;
double ring_active_angle;
double ring_active_module_angle;
double ring_asic_angle;
double ring_asic_interval;
double asic_mid_angle;
for(int i=0;i<10;i++){
ring_inner_radius = ring_outer_radius + sensor_dead_gap * 2;
ring_outer_radius = r[i+1] - sensor_dead_gap;
ring_asic_number = asic_num[i];
ring_module_number = module_num[i];
ring_dead_angle = sensor_dead_width / ring_inner_radius * 360 * dd4hep::degree;
ring_active_angle = deg - ring_dead_angle * 2 * ring_module_number;
ring_active_module_angle = ring_active_angle / ring_module_number;
ring_asic_angle = asic_width / ring_outer_radius;
ring_asic_interval = deg / ring_asic_number;
//create and place sensor logical volume
dd4hep::Tube SensorSolid( ring_inner_radius,
ring_outer_radius,
sensor_thickness/2.0,
ring_dead_angle,
ring_dead_angle + ring_active_module_angle);
Volume SensorLogical( name + dd4hep::_toString(layer_id, "_SensorLogical_%02d_") + std::to_string(i),
SensorSolid,
sensor_mat);
dd4hep::Tube DeadSensorSolidA( ring_inner_radius,
ring_outer_radius,
sensor_thickness/2.0,
0.,
ring_dead_angle);
Volume DeadSensorLogicalA( name + dd4hep::_toString(layer_id, "_DeadSensorLogicalA_%02d_") + std::to_string(i),
DeadSensorSolidA,
sensor_mat);
dd4hep::Tube DeadSensorSolidB( ring_inner_radius,
ring_outer_radius,
sensor_thickness/2.0,
ring_dead_angle + ring_active_module_angle,
ring_dead_angle*2 + ring_active_module_angle);
Volume DeadSensorLogicalB( name + dd4hep::_toString(layer_id, "_DeadSensorLogicalB_%02d_") + std::to_string(i),
DeadSensorSolidB,
sensor_mat);
SensorLogical.setSensitiveDetector(sens);
SensorLogical.setVisAttributes(theDetector.visAttributes(sensVis));
if (x_det.hasAttr(_U(limits))) SensorLogical.setLimitSet(theDetector, x_det.limitsStr());
dd4hep::rec::VolPlane surfsens( SensorLogical,
dd4hep::rec::SurfaceType(dd4hep::rec::SurfaceType::Sensitive),
inner_thick,
outer_thick,
u,v,n,o);
sensor_surf.push_back(surfsens);
DeadSensorLogicalA.setVisAttributes(theDetector.visAttributes(deadsensVis));
DeadSensorLogicalB.setVisAttributes(theDetector.visAttributes(deadsensVis));
pv = SensorEnvLogical.placeVolume(SensorLogical, Position(0, 0, -(pcb_thickness + asic_thickness) / 2.0));
pv.addPhysVolID("layer", layer_id).addPhysVolID("active", 0).addPhysVolID("sensor", i);
sensor_pv.push_back(pv);
pv = SensorEnvLogical.placeVolume(DeadSensorLogicalA, Position(0, 0, -(pcb_thickness + asic_thickness) / 2.0));
pv = SensorEnvLogical.placeVolume(DeadSensorLogicalB, Position(0, 0, -(pcb_thickness + asic_thickness) / 2.0));
if(ring_module_number==2){
dd4hep::Tube SensorSolid( ring_inner_radius,
ring_outer_radius,
sensor_thickness/2.0,
ring_dead_angle*3 + ring_active_module_angle,
ring_dead_angle*3 + ring_active_module_angle*2);
Volume SensorLogical( name + dd4hep::_toString(layer_id, "_SensorLogical_%02d_2_") + std::to_string(i),
SensorSolid,
sensor_mat);
dd4hep::Tube DeadSensorSolidA(ring_inner_radius,
ring_outer_radius,
sensor_thickness/2.0,
ring_dead_angle*2 + ring_active_module_angle,
ring_dead_angle*3 + ring_active_module_angle);
Volume DeadSensorLogicalA( name + dd4hep::_toString(layer_id, "_DeadSensorLogicalA_%02d_2_") + std::to_string(i),
DeadSensorSolidA,
sensor_mat);
dd4hep::Tube DeadSensorSolidB(ring_inner_radius,
ring_outer_radius,
sensor_thickness/2.0,
ring_dead_angle*3 + ring_active_module_angle*2,
ring_dead_angle*4 + ring_active_module_angle*2);
Volume DeadSensorLogicalB( name + dd4hep::_toString(layer_id, "_DeadSensorLogicalB_%02d_2_") + std::to_string(i),
DeadSensorSolidB,
sensor_mat);
SensorLogical.setSensitiveDetector(sens);
SensorLogical.setVisAttributes(theDetector.visAttributes(sensVis));
if (x_det.hasAttr(_U(limits))) SensorLogical.setLimitSet(theDetector, x_det.limitsStr());
dd4hep::rec::VolPlane surfsens( SensorLogical ,
dd4hep::rec::SurfaceType(dd4hep::rec::SurfaceType::Sensitive),
inner_thick,
outer_thick,
u,v,n,o);
sensor_surf.push_back(surfsens);
DeadSensorLogicalA.setVisAttributes(theDetector.visAttributes(sensVis));
DeadSensorLogicalB.setVisAttributes(theDetector.visAttributes(sensVis));
pv = SensorEnvLogical.placeVolume(SensorLogical, Position(0, 0, -(pcb_thickness + asic_thickness) / 2.0));
pv.addPhysVolID("layer", layer_id).addPhysVolID("active", 0).addPhysVolID("sensor", i + 10);
sensor_pv.push_back(pv);
pv = SensorEnvLogical.placeVolume(DeadSensorLogicalA, Position(0, 0, -(pcb_thickness + asic_thickness) / 2.0));
pv = SensorEnvLogical.placeVolume(DeadSensorLogicalB, Position(0, 0, -(pcb_thickness + asic_thickness) / 2.0));
}
//create and place pcb logical volume
dd4hep::Tube PcbSolidA( ring_inner_radius + pcb_rgap,
ring_inner_radius + pcb_rgap + pcb_rlength,
pcb_thickness / 2.0,
0.,
deg);
Volume PcbLogicalA( name + dd4hep::_toString(layer_id, "_PcbLogicalA_%02d_") + std::to_string(i),
PcbSolidA,
pcb_mat);
dd4hep::Tube PcbSolidB( ring_outer_radius - pcb_rgap - pcb_rlength,
ring_outer_radius - pcb_rgap,
pcb_thickness / 2.0,
0.,
deg);
Volume PcbLogicalB( name + dd4hep::_toString(layer_id, "_PcbLogicalB_%02d_") + std::to_string(i),
PcbSolidB,
pcb_mat);
PcbLogicalA.setVisAttributes(theDetector.visAttributes(pcbVis));
PcbLogicalB.setVisAttributes(theDetector.visAttributes(pcbVis));
pv = SensorEnvLogical.placeVolume(PcbLogicalA, Position(0, 0, (sensor_thickness - asic_thickness) / 2.0));
pv = SensorEnvLogical.placeVolume(PcbLogicalB, Position(0, 0, (sensor_thickness - asic_thickness) / 2.0));
//create and place asic logical volume
for(int j=0;j<ring_asic_number;j++){
asic_mid_angle = ring_asic_interval * (j + 0.5);
dd4hep::Tube AsicSolidA( ring_inner_radius + asic_rgap,
ring_inner_radius + asic_rgap + asic_rlength,
asic_thickness / 2.0,
asic_mid_angle - ring_asic_angle / 2.0,
asic_mid_angle + ring_asic_angle / 2.0);
Volume AsicLogicalA( name + dd4hep::_toString(layer_id, "_AsicLogicalA_%02d_") + std::to_string(i) + std::to_string(j),
AsicSolidA,
asic_mat);
dd4hep::Tube AsicSolidB( ring_outer_radius - asic_rgap - asic_rlength,
ring_outer_radius - asic_rgap,
asic_thickness / 2.0,
asic_mid_angle - ring_asic_angle / 2.0,
asic_mid_angle + ring_asic_angle / 2.0);
Volume AsicLogicalB( name + dd4hep::_toString(layer_id, "_AsicLogicalB_%02d_") + std::to_string(i) + std::to_string(j),
AsicSolidB,
asic_mat);
AsicLogicalA.setVisAttributes(theDetector.visAttributes(asicVis));
AsicLogicalB.setVisAttributes(theDetector.visAttributes(asicVis));
pv = SensorEnvLogical.placeVolume(AsicLogicalA, Position(0, 0, (sensor_thickness + pcb_thickness) / 2.0));
pv = SensorEnvLogical.placeVolume(AsicLogicalB, Position(0, 0, (sensor_thickness + pcb_thickness) / 2.0));
}
}
double zpos = (-layer_thickness + support_thickness*2 + sensor_thickness + pcb_thickness + asic_thickness) / 2.0;
pv = PieceEnvLogical.placeVolume(SensorEnvLogical, Position(0, 0, zpos));
//*****************************************************************//
// Assembling
//*****************************************************************//
for(int i=0;i<piece_number; i++){
float rot = layer_id*0.5;
std::stringstream piece_enum;
piece_enum << "otkendcap_piece_" << layer_id << "_" << i;
DetElement pieceDE(layerDE, piece_enum.str(), x_det.id());
//create the meassurement surface
// int sensor_num = std::accumulate(module_num_v.begin(), module_num_v.end(), 0);
int sensor_num = 15;
for(int isensor=0;isensor<sensor_num;++isensor){
std::stringstream sensor_str;
sensor_str << piece_enum.str() << "_" << isensor;
DetElement sensorDE(pieceDE, sensor_str.str(), x_det.id());
sensorDE.setPlacement(sensor_pv[isensor]);
volSurfaceList(sensorDE)->push_back(sensor_surf[isensor]);
}
Transform3D trA ( RotationZYX(deg_interval*(i+rot),
180*dd4hep::degree,
0.),
Position(0.,
0.,
layer_zpos));
Transform3D trB ( RotationZYX(deg_interval*(i+rot),
0.,
0.),
Position(0.,
0.,
-layer_zpos));
pv = layer_assembly.placeVolume(PieceEnvLogical,trA);
pv.addPhysVolID("module", i*2);
pieceDE.setPlacement(pv);
pv = layer_assembly.placeVolume(PieceEnvLogical,trB);
pv.addPhysVolID("module", i*2+1);
pieceDE.setPlacement(pv);
std::cout << piece_enum.str() << " done." << std::endl;
}
// package the reconstruction data
dd4hep::rec::ZPlanarData::LayerLayout otkendcapLayer;
otkendcapLayer.ladderNumber = piece_number;
otkendcapLayer.phi0 = 0.;
otkendcapLayer.sensorsPerLadder = 15;
otkendcapLayer.lengthSensor = r1-r0-sensor_dead_gap*2;
otkendcapLayer.distanceSupport = support_thickness/2.0;
otkendcapLayer.thicknessSupport = support_thickness/2.0;
otkendcapLayer.offsetSupport = 0.;
otkendcapLayer.widthSupport = support_inner_radius;
otkendcapLayer.zHalfSupport = support_outer_radius;
otkendcapLayer.distanceSensitive = support_thickness;
otkendcapLayer.thicknessSensitive = sensor_thickness;
otkendcapLayer.offsetSensitive = 0.;
otkendcapLayer.widthSensitive = 0.;
otkendcapLayer.zHalfSensitive = 0.;
zPlanarData->layers.push_back(otkendcapLayer);
}
std::cout << (*zPlanarData) << endl;
otkendcap.addExtension< ZPlanarData >(zPlanarData);
if ( x_det.hasAttr(_U(combineHits)) ) {
otkendcap.setCombineHits(x_det.attr<bool>(_U(combineHits)),sens);
}
std::cout << "otkendcap done." << std::endl;
return otkendcap;
}
DECLARE_DETELEMENT(SiTracker_otkendcap_v01,create_element)