Newer
Older
#ifndef _PFOCREATING_ALG_C
#define _PFOCREATING_ALG_C
#include "Algorithm/PFOCreatingAlg.h"
StatusCode PFOCreatingAlg::ReadSettings(Settings& m_settings){
settings = m_settings;
if(settings.map_stringPars.find("ReadinECALClusters")==settings.map_stringPars.end()) settings.map_stringPars["ReadinECALClusters"] = "EcalCluster";
if(settings.map_stringPars.find("ReadinHCALClusters")==settings.map_stringPars.end()) settings.map_stringPars["ReadinHCALClusters"] = "HCALCluster";
if(settings.map_stringPars.find("OutputCombPFO")==settings.map_stringPars.end()) settings.map_stringPars["OutputCombPFO"] = "outputPFO";
if(settings.map_floatPars.find("delta_phi_cut")==settings.map_floatPars.end())
settings.map_floatPars["delta_phi_cut"] = 30./180.*TMath::Pi();
if(settings.map_floatPars.find("delta_cosTheta_cut")==settings.map_floatPars.end())
settings.map_floatPars["delta_cosTheta_cut"] = 0.25;
if(settings.map_floatPars.find("extrPoint_HCALHit_distCut")==settings.map_floatPars.end())
settings.map_floatPars["extrPoint_HCALHit_distCut"] = 100;
if(settings.map_floatPars.find("nearby_clus_angleCut")==settings.map_floatPars.end())
settings.map_floatPars["nearby_clus_angleCut"] = 0.15;
return StatusCode::SUCCESS;
};
StatusCode PFOCreatingAlg::Initialize( CyberDataCol& m_datacol ){
m_tracks.clear();
m_ecal_clusters.clear();
m_hcal_clusters.clear();
m_pfobjects.clear();
for(int it=0; it<m_datacol.TrackCol.size(); it++){
m_tracks.push_back( m_datacol.TrackCol[it].get() );
}
for(int ie=0; ie<m_datacol.map_CaloCluster[settings.map_stringPars["ReadinECALClusters"]].size(); ie++){
m_ecal_clusters.push_back( m_datacol.map_CaloCluster[settings.map_stringPars["ReadinECALClusters"]][ie].get() );
}
for(int ih=0; ih<m_datacol.map_CaloCluster[settings.map_stringPars["ReadinHCALClusters"]].size(); ih++){
m_hcal_clusters.push_back( m_datacol.map_CaloCluster[settings.map_stringPars["ReadinHCALClusters"]][ih].get() );
}
return StatusCode::SUCCESS;
};
StatusCode PFOCreatingAlg::RunAlgorithm( CyberDataCol& m_datacol ){
std::cout << "yyy: Running PFOCreatingAlg" << std::endl;
if(m_tracks.size()==0 && m_ecal_clusters.size()==0 && m_hcal_clusters.size()==0){
std::cout << " yyy: No tracks, no clusters in ECAL and HCAL. End PFOCreatingAlg" << std::endl;
return StatusCode::SUCCESS;
}
// Create PFO with ECAl clusters. If a ECAL cluster is a charged cluster, connect HCAL clusters using extrapolated points
for(int ie=0; ie<m_ecal_clusters.size(); ie++){
std::vector<const Cyber::Track*> ecal_cls_track = m_ecal_clusters[ie]->getAssociatedTracks();
if(ecal_cls_track.size()>1){
std::cout << "Error! " << ecal_cls_track.size() << " tracks associated to one ECAL cluster!" << std::endl;
continue;
}
// Charged cluster in ECAL (A cluster with a track)
if(ecal_cls_track.size()==1){
std::vector<Cyber::Calo3DCluster*> hcal_clus_candidate;
hcal_clus_candidate.clear();
GetChargedHCALCandidates(ecal_cls_track[0], m_hcal_clusters, hcal_clus_candidate);
std::shared_ptr<Cyber::PFObject> tmp_pfo = std::make_shared<Cyber::PFObject>();
tmp_pfo->addTrack(ecal_cls_track[0]);
tmp_pfo->setPID(ecal_cls_track[0]->getPID());
tmp_pfo->addECALCluster(m_ecal_clusters[ie]);
for(int ic=0; ic<hcal_clus_candidate.size(); ic++){
tmp_pfo->addHCALCluster(hcal_clus_candidate[ic]);
}
m_pfobjects.push_back(tmp_pfo);
CleanUsedElements(hcal_clus_candidate, m_hcal_clusters);
CleanUsedElements(ecal_cls_track, m_tracks);
}
// Neutral cluster in ECAL (A cluster without track)
else if(ecal_cls_track.size()==0){
// Create PFO with only a ECAL cluster
std::shared_ptr<Cyber::PFObject> tmp_pfo = std::make_shared<Cyber::PFObject>();
tmp_pfo->addECALCluster(m_ecal_clusters[ie]);
m_pfobjects.push_back(tmp_pfo);
}
else{
cout << " yyy: Error: Wrong number of tracks" << endl;
}
}
// Create PFO with only tracks
for(int it=0; it<m_tracks.size(); it++){
std::shared_ptr<Cyber::PFObject> tmp_pfo = std::make_shared<Cyber::PFObject>();
tmp_pfo->addTrack(m_tracks[it]);
tmp_pfo->setPID(m_tracks[it]->getPID());
m_pfobjects.push_back(tmp_pfo);
}
// Connect left HCAL clusters to PFO. These PFO are made of ECAL clusters( and tracks) now
for(int ih=0; ih<m_hcal_clusters.size(); ih++){
TVector3 hcal_clus_pos = m_hcal_clusters[ih]->getHitCenter();
double min_angle = 999.0;
int pfo_index = -1;
for(int ip=0; ip<m_pfobjects.size(); ip++){
std::vector<const Cyber::Calo3DCluster*> pf_ecal_clus = m_pfobjects[ip].get()->getECALClusters();
for(int ie=0; ie<pf_ecal_clus.size(); ie++){
TVector3 ecal_clus_pos = pf_ecal_clus[ie]->getShowerCenter();
double angle = hcal_clus_pos.Angle(ecal_clus_pos);
if(angle<settings.map_floatPars["nearby_clus_angleCut"] && angle<min_angle){
min_angle=angle;
pfo_index = ip;
}
}
}
if(pfo_index>=0){
m_pfobjects[pfo_index].get()->addHCALCluster(m_hcal_clusters[ih]);
}
else{
std::shared_ptr<Cyber::PFObject> tmp_pfo = std::make_shared<Cyber::PFObject>();
tmp_pfo->addHCALCluster(m_hcal_clusters[ih]);
m_pfobjects.push_back(tmp_pfo);
}
}
m_datacol.map_PFObjects[settings.map_stringPars["OutputCombPFO"]] = m_pfobjects;
return StatusCode::SUCCESS;
};
StatusCode PFOCreatingAlg::ClearAlgorithm(){
m_tracks.clear();
m_ecal_clusters.clear();
m_hcal_clusters.clear();
m_pfobjects.clear();
return StatusCode::SUCCESS;
}
StatusCode PFOCreatingAlg::GetChargedHCALCandidates(const Cyber::Track* _track,
std::vector<Cyber::Calo3DCluster*>& _hcal_clusters,
std::vector<Cyber::Calo3DCluster*>& _hcal_clus_candidate)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
{
std::vector<TrackState> hcal_trk_states = _track->getTrackStates("Hcal");
if(hcal_trk_states.size()==0)
return StatusCode::SUCCESS;
std::vector<TVector3> extrpolated_points;
for(int it=0; it<hcal_trk_states.size(); it++){
extrpolated_points.push_back(hcal_trk_states[it].referencePoint);
}
for(int ih=0; ih<_hcal_clusters.size(); ih++){
TVector3 clus_center = _hcal_clusters[ih]->getHitCenter();
TVector3 distance = clus_center - extrpolated_points[0];
if(distance.Mag()>1000) continue; // yyy: harcode for 1000. If the cluster is too far away from the extrpolated points in HCAL, it is obviously not a candidate
bool is_candidate = false;
for(int ihit=0; ihit<_hcal_clusters[ih]->getCaloHits().size(); ihit++){
if(is_candidate) break;
TVector3 hit_pos = _hcal_clusters[ih]->getCaloHits()[ihit]->getPosition();
for(int ie=0; ie<extrpolated_points.size(); ie++){
TVector3 dist = hit_pos - extrpolated_points[ie];
if(dist.Mag()<settings.map_floatPars["extrPoint_HCALHit_distCut"]){
is_candidate = true;
break;
}
}
}
if(is_candidate){
_hcal_clus_candidate.push_back(_hcal_clusters[ih]);
}
}
}
StatusCode PFOCreatingAlg::GetNearbyHCALCandidates( Cyber::Calo3DCluster* _ecal_cluster,
std::vector<Cyber::Calo3DCluster*>& _hcal_clusters,
std::vector<Cyber::Calo3DCluster*>& _hcal_clus_candidate)
{
TVector3 ecal_pos = _ecal_cluster->getShowerCenter();
for(int ih=0; ih<_hcal_clusters.size(); ih++){
TVector3 hcal_pos = _hcal_clusters[ih]->getHitCenter();
double angle = ecal_pos.Angle(hcal_pos);
if(angle<settings.map_floatPars["nearby_clus_angleCut"]){
_hcal_clus_candidate.push_back(_hcal_clusters[ih]);
}
}
return StatusCode::SUCCESS;
}
bool PFOCreatingAlg::isReachOuterMostECAL(Cyber::Calo3DCluster* _ecal_cluster)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
{
// A neutral cluster may deposits energy into HCAL if its cluster in ECAL reach the outermost boundary.
// In this case, it hits the last layer of ECAL or hit the boundary of different modules.
const CaloHalfCluster* p_HFClusterU = _ecal_cluster->getHalfClusterUCol("LinkedLongiCluster")[0];
const CaloHalfCluster* p_HFClusterV = _ecal_cluster->getHalfClusterVCol("LinkedLongiCluster")[0];
int endLayer = max(p_HFClusterU->getEndDlayer(), p_HFClusterV->getEndDlayer());
if (endLayer>13){ // yyy: hardcode! number of layer in ECAL may be different from 14 for other design
cout << " yyy: The ECAL cluster reach the outermost ECAL. endLayer=" << endLayer << endl;
return true;
}
std::vector< std::vector<int> > cluster_towers = _ecal_cluster->getTowerID();
set<int> towerID;
for(int it=0; it<cluster_towers.size(); it++){
towerID.insert(cluster_towers[it][0]);
}
if(towerID.size()>1){
return true;
cout << " yyy: The ECAL cluster deposits in over one module. towerID = (";
for (int i : towerID) {
cout << i << ", ";
}cout << ")" << endl;
}
cout << " yyy: The ECAL cluster does not reach the outermost ECAL. EndLayer=" << endLayer
<< ", towerID = (";
for (int i : towerID) {
cout << i << ", ";
}cout << ")" << endl;
return false;
}
template<typename T1, typename T2>
StatusCode PFOCreatingAlg::CleanUsedElements(std::vector<T1>& _used_elements,
std::vector<T2>& _left_elements)
{
for(int i=0; i<_used_elements.size(); i++){
auto it = std::find(_left_elements.begin(), _left_elements.end(), _used_elements[i]);
if (it != _left_elements.end()) {
_left_elements.erase(it);
}
}
return StatusCode::SUCCESS;
}
template<typename T1, typename T2> StatusCode CleanUsedElement(T1 _used_element,
std::vector<T2>& _left_elements)
{
auto it = std::find(_left_elements.begin(), _left_elements.end(), _used_element);
if (it != _left_elements.end()) {
_left_elements.erase(it);
}
return StatusCode::SUCCESS;
}
StatusCode PFOCreatingAlg::CreateLeftPFO(std::vector<Cyber::Track*>& _tracks,
std::vector<Cyber::Calo3DCluster*>& _hcal_clusters,
std::vector<std::shared_ptr<Cyber::PFObject>>& _pfobjects)
{
for(int it=0; it<_tracks.size(); it++){
std::shared_ptr<Cyber::PFObject> tmp_pfo = std::make_shared<Cyber::PFObject>();
tmp_pfo->addTrack(_tracks[it]);
tmp_pfo->setPID(_tracks[it]->getPID());
_pfobjects.push_back(tmp_pfo);
}
for(int ih=0; ih<_hcal_clusters.size(); ih++){
std::shared_ptr<Cyber::PFObject> tmp_pfo = std::make_shared<Cyber::PFObject>();
tmp_pfo->addHCALCluster(_hcal_clusters[ih]);
_pfobjects.push_back(tmp_pfo);
}
return StatusCode::SUCCESS;
}
#endif