Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//====================================================================
// CepC BeamPipe models in DD4hep
//--------------------------------------------------------------------
#include "OtherDetectorHelpers.h"
#include "TGeoScaledShape.h"
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/DD4hepUnits.h"
#include "DD4hep/DetType.h"
#include "DD4hep/detail/Handle.inl"
#include "DDRec/DetectorData.h"
#include "DDRec/Surface.h"
#include "XML/Utilities.h"
#include <cmath>
#include <map>
#include <string>
using dd4hep::Assembly;
using dd4hep::BUILD_ENVELOPE;
using dd4hep::DetElement;
using dd4hep::Detector;
using dd4hep::PlacedVolume;
using dd4hep::Ref_t;
using dd4hep::SensitiveDetector;
using dd4hep::Volume;
using dd4hep::rec::ConicalSupportData;
using dd4hep::rec::SurfaceType;
using dd4hep::rec::Vector3D;
using dd4hep::rec::VolCylinder;
using dd4hep::rec::VolCylinderImpl;
using dd4hep::rec::VolSurface;
using dd4hep::rec::volSurfaceList;
//BeamPipe
static Ref_t create_detector(Detector& theDetector,
xml_h element,
SensitiveDetector /*sens*/) {
std::cout << "This is the Beampipe:" << std::endl;
//Access to the XML File
xml_det_t x_beampipe = element;
const std::string name = x_beampipe.nameStr();
DetElement tube( name, x_beampipe.id() ) ;
// --- create an envelope volume and position it into the world ---------------------
Volume envelope = dd4hep::xml::createPlacedEnvelope( theDetector, element , tube ) ;
dd4hep::xml::setDetectorTypeFlag( element, tube ) ;
if( theDetector.buildType() == BUILD_ENVELOPE ) return tube ;
//-----------------------------------------------------------------------------------
ConicalSupportData* beampipeData = new ConicalSupportData ;
const double phi0 = 0 ;
const double dPhi = 360.0*dd4hep::degree;
//Parameters we have to know about
dd4hep::xml::Component xmlParameter = x_beampipe.child(_Unicode(parameter));
const double crossingAngle = xmlParameter.attr< double >(_Unicode(crossingangle));
std::cout << "Crossing angle = " << crossingAngle << std::endl;
for(xml_coll_t si( x_beampipe ,Unicode("section")); si; ++si) {
xml_comp_t x_section(si);
CEPC::ECrossType type = CEPC::getCrossType(x_section.attr< std::string >(_Unicode(type)));
const double zstart = x_section.attr< double > (_Unicode(zStart));
const double zend = x_section.attr< double > (_Unicode(zEnd));
const double rInnerStart = x_section.attr< double > (_Unicode(rStart));
double rInnerEnd=0, size=0, shift=0;
try{
rInnerEnd = x_section.attr< double > (_Unicode(rEnd));
}
catch(std::runtime_error& e){
rInnerEnd = rInnerStart;
}
if(type==CEPC::kWaist || type==CEPC::kFatWaist || type==CEPC::kCrotch || type==CEPC::kCrotchAsymUp || type==CEPC::kCrotchAsymDn){
try{
size = x_section.attr< double > (_Unicode(size));
}
catch(std::runtime_error& e){
std::cout << "The maximum distance of runway is not set, will be calculated automatically by crossing angle" <<std::endl;
}
try{
shift = x_section.attr< double > (_Unicode(shift));
}
catch(std::runtime_error& e){
shift = 0;
}
}
const std::string volName = "BeamPipe_" + x_section.nameStr();
std::cout << "section: "
<< std::setw(8) << zstart /dd4hep::mm
<< std::setw(8) << zend /dd4hep::mm
<< std::setw(8) << rInnerStart /dd4hep::mm
<< std::setw(8) << rInnerEnd /dd4hep::mm
<< std::setw(8) << size /dd4hep::mm
<< std::setw(8) << type
<< std::setw(35) << volName
<< std::endl;
const double angle = crossingAngle;
const double zHalf = fabs(zend - zstart) * 0.5;
const double zCenter = fabs(zend + zstart) * 0.5;
dd4hep::Material beamMaterial = theDetector.material("beam");
double clipSize = 100*dd4hep::mm;
if(type==CEPC::kFlareLegUp || type==CEPC::kFlareLegDn){
double total = rInnerStart, totalEnd = rInnerEnd;
for(xml_coll_t li(x_section,_U(layer)); li; ++li) {
xml_comp_t x_layer(li);
const double thickness = x_layer.thickness();
total += thickness;
double thicknessEnd = 0;
try{
thicknessEnd = x_layer.attr< double > (_Unicode(thicknessEnd));
}
catch(std::runtime_error& e){
thicknessEnd = thickness;
}
totalEnd += thicknessEnd;
}
clipSize = std::max(total, totalEnd)*tan(0.5*angle);
}
int ilayer = 0;
double radius = rInnerStart;
double radiusEnd = rInnerEnd;
double pipeRadius = 0;
double pipeThickness = 0;
double pipeThicknessRel = 0;
double pipeRadiusEnd = 0;
double pipeThicknessEnd = 0;
double pipeThicknessRelEnd = 0;
for(xml_coll_t li(x_section,_U(layer)); li; ++li, ++ilayer) {
xml_comp_t x_layer(li);
double thickness = x_layer.thickness();
dd4hep::Material material = theDetector.material( x_layer.materialStr() );
double thicknessEnd = 0;
try{
thicknessEnd = x_layer.attr< double > (_Unicode(thicknessEnd));
}
catch(std::runtime_error& e){
thicknessEnd = thickness;
}
std::cout << " layer: " << std::setw(8) << thickness/dd4hep::mm << std::setw(8) << thicknessEnd/dd4hep::mm << std::setw(15) << material.name() << std::endl;
char suffix[20];
sprintf(suffix,"_%d",ilayer);
std::string layerName = volName + suffix;
if(type==CEPC::kCenter || type==CEPC::kCenterSide){
dd4hep::ConeSegment subLayer(zHalf, radius, radius+thickness, radiusEnd, radiusEnd+thicknessEnd, phi0, dPhi);
dd4hep::Volume subLayerLog(volName, subLayer, material);
dd4hep::Transform3D transformer(dd4hep::RotationY(0), dd4hep::Position(0, 0, zCenter));
dd4hep::Transform3D transmirror(dd4hep::RotationY(180*dd4hep::degree), dd4hep::RotateY(dd4hep::Position(0, 0, zCenter), 180*dd4hep::degree));
envelope.placeVolume(subLayerLog, transformer);
envelope.placeVolume(subLayerLog, transmirror);
std::cout << "fucd debug: radL = " << material.radLength()/dd4hep::mm << " intL = " << material.intLength()/dd4hep::mm << std::endl;
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
if(material.radLength()<10000*dd4hep::mm) subLayerLog.setVisAttributes(theDetector, "TubeVis");
else subLayerLog.setVisAttributes(theDetector, "VacVis");
if(material.radLength()<10000*dd4hep::mm){
double tEff = thickness/material.radLength()*theDetector.material("G4_Be").radLength();
double tEffEnd = thicknessEnd/material.radLength()*theDetector.material("G4_Be").radLength();
if(pipeRadius==0) pipeRadius = radius;
if(pipeRadiusEnd==0) pipeRadiusEnd = radiusEnd;
pipeThickness += tEff;
pipeThicknessEnd += tEffEnd;
pipeThicknessRel += thickness;
pipeThicknessRelEnd += thicknessEnd;
}
}
else if(type==CEPC::kLegs){
double clipAngle = 0.5*angle;
double lowNorml[3] = { sin(clipAngle), 0, -cos(clipAngle)};
double highNorml[3] = {-sin(clipAngle), 0, cos(clipAngle)};
dd4hep::CutTube subLayer(radius, radius+thickness, zHalf/cos(clipAngle), phi0, dPhi, lowNorml[0], lowNorml[1], lowNorml[2], highNorml[0], highNorml[1], highNorml[2]);
dd4hep::Volume subLayerLog(volName, subLayer, material);
dd4hep::Transform3D plusUpTransformer(dd4hep::RotationY(clipAngle), dd4hep::RotateY(dd4hep::Position(0,0,zCenter/cos(clipAngle)), clipAngle));
dd4hep::Transform3D plusDownTransformer(dd4hep::RotationZYX(180*dd4hep::degree, -clipAngle, 0), dd4hep::RotateY(dd4hep::Position(0,0,zCenter/cos(clipAngle)), -clipAngle));
dd4hep::Transform3D minusUpTransformer(dd4hep::RotationY(clipAngle), dd4hep::RotateY(dd4hep::Position(0,0,-zCenter/cos(clipAngle)), clipAngle));
dd4hep::Transform3D minusDownTransformer(dd4hep::RotationZYX(180*dd4hep::degree, -clipAngle, 0), dd4hep::RotateY(dd4hep::Position(0,0,-zCenter/cos(clipAngle)), -clipAngle));
envelope.placeVolume(subLayerLog, plusUpTransformer);
envelope.placeVolume(subLayerLog, plusDownTransformer);
envelope.placeVolume(subLayerLog, minusUpTransformer);
envelope.placeVolume(subLayerLog, minusDownTransformer);
if(material.radLength()<10000*dd4hep::mm) subLayerLog.setVisAttributes(theDetector, "TubeVis");
else subLayerLog.setVisAttributes(theDetector, "VacVis");
}
else if(type==CEPC::kFlareLegUp || type==CEPC::kFlareLegDn){
double clipAngle = (type==CEPC::kFlareLegUp)?0.5*angle:-0.5*angle;
double rOuter = radius+thickness;
double rOuterEnd = radiusEnd+thicknessEnd;
dd4hep::Tube clipSolid(0, zHalf*tan(0.5*angle)+clipSize/sin(0.5*angle), zHalf, phi0, dPhi);
dd4hep::Transform3D clipTransformer(dd4hep::RotationY(-clipAngle), dd4hep::Position(0, 0, 0));
dd4hep::Transform3D placementTransformer(dd4hep::RotationY(clipAngle), dd4hep::RotateY(dd4hep::Position(0, 0, zCenter/cos(clipAngle)), clipAngle));
dd4hep::Transform3D placementTransmirror(dd4hep::RotationZYX(0, clipAngle, 180*dd4hep::degree), dd4hep::RotateY(dd4hep::Position(0, 0, -zCenter/cos(clipAngle)), -clipAngle));
dd4hep::ConeSegment wholeSolid(zHalf + clipSize, radius, rOuter, radiusEnd, rOuterEnd, phi0, dPhi);
dd4hep::IntersectionSolid layerSolid(wholeSolid, clipSolid, clipTransformer);
dd4hep::Volume subLayerLog(volName, layerSolid, material);
envelope.placeVolume(subLayerLog, placementTransformer);
envelope.placeVolume(subLayerLog, placementTransmirror);
if(material.radLength()<10000*dd4hep::mm) subLayerLog.setVisAttributes(theDetector, "TubeVis");
else subLayerLog.setVisAttributes(theDetector, "VacVis");
}
else if(type==CEPC::kCrotch){
double beamAngle = 0.5*angle;
if(size==0) size = (zstart*tan(beamAngle)+radius)*2;
double x1 = 0.5*size - radius;
double x2 = zend*tan(beamAngle);
double y1 = radius + thickness;
double y2 = y1;
double axisAngle = atan((x2-x1)/zHalf/2);
if(fabs(beamAngle-axisAngle)>1e-12){
std::cout << "Warning! axis angle not equal to beam angle. beam=" << beamAngle << " VS axis=" << axisAngle << ", user defined design and workable" << std::endl;
}
double zSide = 2*zHalf/cos(axisAngle)+y1*tan(axisAngle)+y2*tan(axisAngle);
double xshift = 0.5*(x1+x2);
dd4hep::Trd2 body1(x1, x2, y1, y2, zHalf);
dd4hep::Trd2 cut1(x1+y1/cos(axisAngle), x2+y2/cos(axisAngle), y1, y2, zHalf);
dd4hep::EllipticalTube side1(y1*cos(axisAngle), y1, 0.5*zSide);
dd4hep::Transform3D unionTransformer1(dd4hep::RotationY(axisAngle), dd4hep::Position(xshift, 0, 0));
dd4hep::Transform3D unionTransformer2(dd4hep::RotationY(-axisAngle), dd4hep::Position(-xshift, 0, 0));
dd4hep::Transform3D sameTransformer(dd4hep::RotationY(0), dd4hep::Position(0, 0, 0));
dd4hep::UnionSolid tmp1Solid(body1, side1, unionTransformer1);
dd4hep::UnionSolid tmp2Solid(tmp1Solid, side1, unionTransformer2);
dd4hep::IntersectionSolid shell(tmp2Solid, cut1, sameTransformer);
dd4hep::Volume shellLog(volName+"Shell", shell, material);
envelope.placeVolume(shellLog, dd4hep::Position(0, 0, zCenter));
envelope.placeVolume(shellLog, dd4hep::Transform3D(dd4hep::RotationY(180*dd4hep::degree), dd4hep::Position(0, 0, -zCenter)));
double yHole = y1-thickness;
dd4hep::Trd2 body2(x1, x2, yHole, yHole, zHalf);
dd4hep::Trd2 cut2(0, x2, yHole, yHole, zHalf);
dd4hep::SubtractionSolid tmp3Solid(body2, cut2, sameTransformer);
dd4hep::EllipticalTube side2(yHole*cos(axisAngle), yHole, zSide);
dd4hep::UnionSolid tmp4Solid(tmp3Solid, side2, unionTransformer1);
dd4hep::UnionSolid tmp5Solid(tmp4Solid, side2, unionTransformer2);
double x1shift = radius-shift;
double crotchAngle = atan(0.5*(x2-x1shift)/zHalf);
dd4hep::EllipticalTube side3(yHole*cos(crotchAngle), yHole, zSide);
dd4hep::Transform3D unionTransformer3(dd4hep::RotationY(crotchAngle), dd4hep::Position(0.5*(x2+x1shift), 0, 0));
dd4hep::Transform3D unionTransformer4(dd4hep::RotationY(-crotchAngle), dd4hep::Position(-0.5*(x2+x1shift), 0, 0));
dd4hep::UnionSolid tmp6Solid(tmp5Solid, side3, unionTransformer3);
dd4hep::UnionSolid tmp7Solid(tmp6Solid, side3, unionTransformer4);
dd4hep::IntersectionSolid vacuumPipe(tmp7Solid, cut1, sameTransformer);
dd4hep::Volume pipeLog(volName+"Vacuum", vacuumPipe, beamMaterial);
shellLog.placeVolume(pipeLog, dd4hep::Position(0, 0, 0));
shellLog.setVisAttributes(theDetector, "TubeVis");
pipeLog.setVisAttributes(theDetector, "VacVis");
}
else if(type==CEPC::kCrotchAsymUp || type==CEPC::kCrotchAsymDn){
double beamAngle = 0.5*angle;
double xC2 = (shift==0)?zend*tan(beamAngle):shift;
if(radiusEnd==0) radiusEnd = radius;
if(thicknessEnd==0) thicknessEnd = thickness;
if(size==0) size = 2*radius;
double rOuter = radius+thickness;
double rOuterEnd = radiusEnd+thicknessEnd;
double xMaxEnd = xC2+rOuterEnd;
double yMax = 0.5*size+thickness;
dd4hep::Trd2 body(0, xC2, yMax, rOuterEnd, zHalf);
double expandAngle = atan(xC2/(2*zHalf));
double edge1ToZAngle = atan((xMaxEnd-rOuter)/(2*zHalf));
double edge2ToZAngle = atan((xC2-rOuterEnd+rOuter)/(2*zHalf));
double edge2ToXAngle = 90*dd4hep::degree - edge2ToZAngle;
double bottomAngle = 0.5*(180*dd4hep::degree-(edge2ToZAngle-edge1ToZAngle));
double rotateAngle = 0.5*(edge1ToZAngle+edge2ToZAngle);
double edge1ToCAngle = asin(sin(90*dd4hep::degree+edge1ToZAngle)/(xC2/sin(expandAngle))*(rOuter-rOuterEnd));
double CToEConeAxisAngle = edge1ToCAngle-0.5*(edge2ToZAngle-edge1ToZAngle);
if(fabs(rotateAngle-(expandAngle-CToEConeAxisAngle))>1e-12){
std::cout << "Warning! rotate angle was not calculated rightly. Please check input parameters whether satisfy the Waist case." << std::endl;
}
double a1 = rOuter/sin(bottomAngle)*sin(90*dd4hep::degree-edge1ToZAngle);
double a2 = rOuterEnd/sin(180*dd4hep::degree-bottomAngle)*sin(90*dd4hep::degree-edge2ToZAngle);
double zC1 = rOuter/sin(edge1ToCAngle)*sin(90*dd4hep::degree+edge1ToZAngle)*cos(CToEConeAxisAngle);
double zC2 = rOuterEnd/rOuter*zC1;
double zBottom = a1*tan(bottomAngle);
double aC1 = a1/zBottom*zC1;
double aC2 = a1/zBottom*zC2;
double xC1InECone = zC1*tan(CToEConeAxisAngle);
double xC2InECone = zC2*tan(CToEConeAxisAngle);
double bC1 = sqrt(rOuter*rOuter/(1-xC1InECone*xC1InECone/aC1/aC1));
double bC2 = sqrt(rOuterEnd*rOuterEnd/(1-xC2InECone*xC2InECone/aC2/aC2));
double b1 = bC1/zC1*zBottom;
if(fabs(bC1/zC1-bC2/zC2)>1e-12){
std::cout << "Warning! bC1/zC1 not equal to bC2/zC2. Please tell Chengdong(fucd@ihep.ac.cn)." << std::endl;
}
double pzTopCut = 0.5*(a1-a2)*tan(bottomAngle);
double thetaCut1 = atan((0.5*(xC2+rOuterEnd)-0.5*rOuter)/(2*zHalf));
double xcenterCut1 = 0.5*(0.5*(xC2+rOuterEnd)+0.5*rOuter);
dd4hep::Trap cut1(zHalf, thetaCut1, 0, yMax, 0.5*rOuter, 0.5*rOuter, 0, rOuterEnd, 0.5*(xC2+rOuterEnd), 0.5*(xC2+rOuterEnd), 0);
TGeoCone* pCone1 = new TGeoCone(pzTopCut, 0, a1, 0, a2);
//double factor =
TGeoScale* pScale1 = new TGeoScale(1, b1/a1, 1);
TGeoScaledShape* pScaledShape1 = new TGeoScaledShape(pCone1, pScale1);
dd4hep::Solid_type<TGeoScaledShape> side1(pScaledShape1);
double xshift = 0.5*(xMaxEnd-a2*cos(rotateAngle)-rOuter+a1*cos(bottomAngle-edge2ToXAngle));
double zshift = 0.5*(a2-a1)*sin(rotateAngle);
dd4hep::Transform3D unionTransformer1(dd4hep::RotationY(rotateAngle), dd4hep::Position(xshift, 0, zshift));
dd4hep::Transform3D cutTransformer1(dd4hep::RotationY(0), dd4hep::Position(xcenterCut1, 0, 0));
dd4hep::UnionSolid tmp1Solid(body, side1, unionTransformer1);
dd4hep::IntersectionSolid shell(tmp1Solid, cut1, cutTransformer1);
dd4hep::Volume shellLog(volName, shell, material);
if(type==CEPC::kCrotchAsymUp){
envelope.placeVolume(shellLog, dd4hep::Position(0, 0, zCenter));
envelope.placeVolume(shellLog, dd4hep::Transform3D(dd4hep::RotationX(180*dd4hep::degree), dd4hep::Position(0, 0, -zCenter)));
}
else{
envelope.placeVolume(shellLog, dd4hep::Transform3D(dd4hep::RotationZ(180*dd4hep::degree), dd4hep::Position(0, 0, zCenter)));
envelope.placeVolume(shellLog, dd4hep::Transform3D(dd4hep::RotationY(180*dd4hep::degree), dd4hep::Position(0, 0,-zCenter)));
}
double edge1ToZ = atan((xMaxEnd-thicknessEnd-radius)/(2*zHalf));
double edge2ToZ = atan((xC2-radiusEnd+radius)/(2*zHalf));
double edge2ToX = 90*dd4hep::degree - edge2ToZ;
double bottom = 0.5*(180*dd4hep::degree-(edge2ToZ-edge1ToZ));
double rotate = 0.5*(edge1ToZ+edge2ToZ);
double edge1ToC = asin(sin(90*dd4hep::degree+edge1ToZ)/(xC2/sin(expandAngle))*(radius-radiusEnd));
double CToEConeAxis = edge1ToC-0.5*(edge2ToZ-edge1ToZ);
if(fabs(rotate-(expandAngle-CToEConeAxis))>1e-12){
std::cout << "Warning! rotate angle was not calculated rightly. Please check input parameters whether satisfy the Waist case." << std::endl;
}
double a1Hole = radius/sin(bottom)*sin(90*dd4hep::degree-edge1ToZ);
double a2Hole = radiusEnd/sin(180*dd4hep::degree-bottom)*sin(90*dd4hep::degree-edge2ToZ);
double zC1Hole = radius/sin(edge1ToC)*sin(90*dd4hep::degree+edge1ToZ)*cos(CToEConeAxis);
double zC2Hole = radiusEnd/radius*zC1Hole;
double zBottomHole = a1Hole*tan(bottom);
double aC1Hole = a1Hole/zBottomHole*zC1Hole;
double aC2Hole = a1Hole/zBottomHole*zC2Hole;
double xC1InEConeHole = zC1Hole*tan(CToEConeAxis);
double xC2InEConeHole = zC2Hole*tan(CToEConeAxis);
double bC1Hole = sqrt(radius*radius/(1-xC1InEConeHole*xC1InEConeHole/aC1Hole/aC1Hole));
double bC2Hole = sqrt(radiusEnd*radiusEnd/(1-xC2InEConeHole*xC2InEConeHole/aC2Hole/aC2Hole));
double b1Hole = bC1Hole/zC1Hole*zBottomHole;
if(fabs(bC1Hole/zC1Hole-bC2Hole/zC2Hole)>1e-12){
std::cout << "Warning! bC1/zC1 not equal to bC2/zC2 for Hole. Please tell Chengdong(fucd@ihep.ac.cn)." << std::endl;
}
double pzTopCutHole = 0.5*(a1Hole-a2Hole)*tan(bottom);
dd4hep::Trd2 body2(0, xC2, yMax-thickness, radiusEnd, zHalf);
double thetaCut2 = atan((xC2-0.5*radius)/(2*zHalf));
double xcenterCut2 = 0.5*radius+0.5*(xC2-0.5*radius);
dd4hep::Trap cut2(zHalf, thetaCut2, 0, yMax-thickness, 0.5*radius, 0.5*radius, 0, radiusEnd, radiusEnd, radiusEnd, 0);
TGeoCone* pCone2 = new TGeoCone(pzTopCutHole, 0, a1Hole, 0, a2Hole);
TGeoScale* pScale2 = new TGeoScale(1, b1Hole/a1Hole, 1);
TGeoScaledShape* pScaledShape2 = new TGeoScaledShape(pCone2, pScale2);
dd4hep::Solid_type<TGeoScaledShape> side2(pScaledShape2);
double xshiftHole = 0.5*(xMaxEnd-thicknessEnd-a2Hole*cos(rotate)-radius+a1Hole*cos(bottom-edge2ToX));
double zshiftHole = 0.5*(a2Hole-a1Hole)*sin(rotate);
dd4hep::Transform3D cutTransformer2(dd4hep::RotationY(rotate), dd4hep::Position(xshiftHole-xcenterCut2, 0, zshiftHole));
dd4hep::IntersectionSolid vacuumPipe(cut2, side2, cutTransformer2);
dd4hep::Volume pipeLog(volName, vacuumPipe, beamMaterial);
shellLog.placeVolume(pipeLog, dd4hep::Position(xcenterCut2, 0, 0));
shellLog.setVisAttributes(theDetector, "TubeVis");
pipeLog.setVisAttributes(theDetector, "VacVis");
}
else if(type==CEPC::kWaist){
double beamAngle = 0.5*angle;
if(radiusEnd==0) radiusEnd = radius;
if(size==0) size = (zend*tan(beamAngle)+radiusEnd)*2;
if(thicknessEnd==0) thicknessEnd = thickness;
double xC2 = 0.5*size - radiusEnd;
double rOuter = radius+thickness;
double rOuterEnd = radiusEnd+thicknessEnd;
double rMaxEnd = 0.5*size+thicknessEnd;
dd4hep::Trd2 body1(0, xC2, rOuter, rOuterEnd, zHalf);
dd4hep::Trd2 cut(rOuter, rMaxEnd, rOuter, rOuterEnd, zHalf);
double expandAngle = atan(xC2/(2*zHalf));
double edge1ToZAngle = atan((rMaxEnd-rOuter)/(2*zHalf));
double edge2ToZAngle = atan((xC2-rOuterEnd+rOuter)/(2*zHalf));
double edge2ToXAngle = 90*dd4hep::degree - edge2ToZAngle;
double bottomAngle = 0.5*(180*dd4hep::degree-(edge2ToZAngle-edge1ToZAngle));
double rotateAngle = 0.5*(edge1ToZAngle+edge2ToZAngle);
double edge1ToCAngle = asin(sin(90*dd4hep::degree+edge1ToZAngle)/(xC2/sin(expandAngle))*(rOuter-rOuterEnd));
double CToEConeAxisAngle = edge1ToCAngle-0.5*(edge2ToZAngle-edge1ToZAngle);
if(fabs(rotateAngle-(expandAngle-CToEConeAxisAngle))>1e-12){
std::cout << "Warning! rotate angle was not calculated rightly. Please check input parameters whether satisfy the Waist case." << std::endl;
}
double a1 = rOuter/sin(bottomAngle)*sin(90*dd4hep::degree-edge1ToZAngle);
double a2 = rOuterEnd/sin(180*dd4hep::degree-bottomAngle)*sin(90*dd4hep::degree-edge2ToZAngle);
double zC1 = rOuter/sin(edge1ToCAngle)*sin(90*dd4hep::degree+edge1ToZAngle)*cos(CToEConeAxisAngle);
double zC2 = rOuterEnd/rOuter*zC1;
double zBottom = a1*tan(bottomAngle);
double aC1 = a1/zBottom*zC1;
double aC2 = a1/zBottom*zC2;
double xC1InECone = zC1*tan(CToEConeAxisAngle);
double xC2InECone = zC2*tan(CToEConeAxisAngle);
double bC1 = sqrt(rOuter*rOuter/(1-xC1InECone*xC1InECone/aC1/aC1));
double bC2 = sqrt(rOuterEnd*rOuterEnd/(1-xC2InECone*xC2InECone/aC2/aC2));
double b1 = bC1/zC1*zBottom;
if(fabs(bC1/zC1-bC2/zC2)>1e-12){
std::cout << "Warning! bC1/zC1 not equal to bC2/zC2." << std::endl;
}
double pzTopCut = 0.5*(a1-a2)*tan(bottomAngle);
TGeoCone* pCone1 = new TGeoCone(pzTopCut, 0, a1, 0, a2);
TGeoScale* pScale1 = new TGeoScale(1, b1/a1, 1);
TGeoScaledShape* pScaledShape1 = new TGeoScaledShape(pCone1,pScale1);
dd4hep::Solid_type<TGeoScaledShape> side1(pScaledShape1);
double xshift = 0.5*(rMaxEnd-a2*cos(rotateAngle)-rOuter+a1*cos(bottomAngle-edge2ToXAngle));
double zshift = 0.5*(a2-a1)*sin(rotateAngle);
dd4hep::Transform3D unionTransformer1(dd4hep::RotationY(rotateAngle), dd4hep::Position(xshift, 0, zshift));
dd4hep::Transform3D unionTransformer2(dd4hep::RotationY(-rotateAngle), dd4hep::Position(-xshift, 0, zshift));
dd4hep::Transform3D sameTransformer(dd4hep::RotationY(0), dd4hep::Position(0, 0, 0));
dd4hep::UnionSolid tmp1Solid(body1, side1, unionTransformer1);
dd4hep::UnionSolid tmp2Solid(tmp1Solid, side1, unionTransformer2);
dd4hep::IntersectionSolid shell(tmp2Solid, cut, sameTransformer);
dd4hep::Volume shellLog(volName+"Shell", shell, material);
envelope.placeVolume(shellLog, dd4hep::Position(0, 0, zCenter));
envelope.placeVolume(shellLog, dd4hep::Transform3D(dd4hep::RotationY(180*dd4hep::degree), dd4hep::Position(0, 0, -zCenter)));
double edge1ToZ = atan((0.5*size-radius)/(2*zHalf));
double edge2ToZ = atan((xC2-radiusEnd+radius)/(2*zHalf));
double edge2ToX = 90*dd4hep::degree - edge2ToZ;
double bottom = 0.5*(180*dd4hep::degree-(edge2ToZ-edge1ToZ));
double rotate = 0.5*(edge1ToZ+edge2ToZ);
double edge1ToC = asin(sin(90*dd4hep::degree+edge1ToZ)/(xC2/sin(expandAngle))*(radius-radiusEnd));
double CToEConeAxis = edge1ToC-0.5*(edge2ToZ-edge1ToZ);
if(fabs(rotate-(expandAngle-CToEConeAxis))>1e-12){
std::cout << "Warning! rotate angle was not calculated rightly. Please check input parameters whether satisfy the Waist case." << std::endl;
}
double a1Hole = radius/sin(bottom)*sin(90*dd4hep::degree-edge1ToZ);
double a2Hole = radiusEnd/sin(180*dd4hep::degree-bottom)*sin(90*dd4hep::degree-edge2ToZ);
double zC1Hole = radius/sin(edge1ToC)*sin(90*dd4hep::degree+edge1ToZ)*cos(CToEConeAxis);
double zC2Hole = radiusEnd/radius*zC1Hole;
double zBottomHole = a1Hole*tan(bottom);
double aC1Hole = a1Hole/zBottomHole*zC1Hole;
double aC2Hole = a1Hole/zBottomHole*zC2Hole;
double xC1InEConeHole = zC1Hole*tan(CToEConeAxis);
double xC2InEConeHole = zC2Hole*tan(CToEConeAxis);
double bC1Hole = sqrt(radius*radius/(1-xC1InEConeHole*xC1InEConeHole/aC1Hole/aC1Hole));
double bC2Hole = sqrt(radiusEnd*radiusEnd/(1-xC2InEConeHole*xC2InEConeHole/aC2Hole/aC2Hole));
double b1Hole = bC1Hole/zC1Hole*zBottomHole;
if(fabs(bC1Hole/zC1Hole-bC2Hole/zC2Hole)>1e-12){
std::cout << "Warning! bC1/zC1 not equal to bC2/zC2 for Hole." << std::endl;
}
double pzTopCutHole = 0.5*(a1Hole-a2Hole)*tan(bottom);
dd4hep::Trd2 body2(0, xC2, radius, radiusEnd, zHalf);
dd4hep::Trd2 cut2(radius, 0.5*size, radius, radiusEnd, zHalf);
TGeoCone* pCone2 = new TGeoCone(pzTopCutHole, 0, a1Hole, 0, a2Hole);
TGeoScale* pScale2 = new TGeoScale(1, b1Hole/a1Hole, 1);
TGeoScaledShape* pScaledShape2 = new TGeoScaledShape(pCone2,pScale2);
dd4hep::Solid_type<TGeoScaledShape> side2(pScaledShape2);
double xshiftHole = 0.5*(0.5*size-a2Hole*cos(rotate)-radius+a1Hole*cos(bottom-edge2ToX));
double zshiftHole = 0.5*(a2Hole-a1Hole)*sin(rotate);
dd4hep::Transform3D unionTransformer3(dd4hep::RotationY(rotate), dd4hep::Position(xshiftHole, 0, zshiftHole));
dd4hep::Transform3D unionTransformer4(dd4hep::RotationY(-rotate), dd4hep::Position(-xshiftHole, 0, zshiftHole));
dd4hep::UnionSolid tmp3Solid(body2, side2, unionTransformer3);
dd4hep::UnionSolid tmp4Solid(tmp3Solid, side2, unionTransformer4);
dd4hep::IntersectionSolid vacuumPipe(tmp4Solid, cut, sameTransformer);
dd4hep::Volume pipeLog(volName+"Vacuum", vacuumPipe, beamMaterial);
shellLog.placeVolume(pipeLog, dd4hep::Position(0, 0, 0));
shellLog.setVisAttributes(theDetector, "TubeVis");
pipeLog.setVisAttributes(theDetector, "VacVis");
}
else if(type == CEPC::kFatWaist){
double beamAngle = 0.5*angle;
if(radiusEnd==0) radiusEnd = radius;
if(size==0) size = (zend*tan(beamAngle)+radiusEnd)*2;
if(thicknessEnd==0) thicknessEnd = thickness;
double rOuter = radius+thickness;
double rOuterEnd = radiusEnd+thicknessEnd;
double yMaxEnd = 0.5*size+thicknessEnd;
dd4hep::Transform3D sameTransformer(dd4hep::RotationY(0), dd4hep::Position(0, 0, 0));
dd4hep::Trd2 body1(rOuter, rOuterEnd, rOuter, yMaxEnd, zHalf);
dd4hep::ConeSegment cone1(zHalf, 0, rOuter, 0, rOuterEnd, phi0, dPhi);
dd4hep::IntersectionSolid shell(cone1, body1, sameTransformer);
dd4hep::Volume shellLog(volName, shell, material);
envelope.placeVolume(shellLog, dd4hep::Position(0, 0, zCenter));
envelope.placeVolume(shellLog, dd4hep::Transform3D(dd4hep::RotationY(180*dd4hep::degree), dd4hep::Position(0, 0, -zCenter)));
dd4hep::Trd2 body2(radius, radiusEnd, radius, 0.5*size, zHalf);
dd4hep::ConeSegment cone2(zHalf, 0, radius, 0, radius, phi0, dPhi);
dd4hep::IntersectionSolid vacuumPipe(cone2, body2, sameTransformer);
dd4hep::Volume pipeLog(volName, vacuumPipe, beamMaterial);
shellLog.placeVolume(pipeLog, dd4hep::Position(0, 0, 0));
shellLog.setVisAttributes(theDetector, "TubeVis");
pipeLog.setVisAttributes(theDetector, "VacVis");
}
radius += thickness;
radiusEnd += thicknessEnd;
}
if( type == CEPC::kCenter ) { // store only the central sections !
ConicalSupportData::Section section ;
section.rInner = pipeRadius + 0.5*(pipeThicknessRel-pipeThickness) ;
section.rOuter = section.rInner + pipeThickness;
section.zPos = zstart ;
ConicalSupportData::Section sectionEnd ;
sectionEnd.rInner = pipeRadiusEnd + 0.5*(pipeThicknessRelEnd-pipeThicknessEnd) ;
sectionEnd.rOuter = sectionEnd.rInner + pipeThicknessEnd;
sectionEnd.zPos = zend ;
if(beampipeData->sections.size()!=0){
ConicalSupportData::Section last = beampipeData->sections.back();
if(last.rInner != section.rInner || last.rOuter != section.rOuter){
section.zPos = zstart + 1e-9*dd4hep::mm ;
beampipeData->sections.push_back( section );
}
}
else beampipeData->sections.push_back( section );
beampipeData->sections.push_back( sectionEnd ) ;
}
}//for all xmlSections
// add a surface just inside the beampipe for tracking:
double rInner = beampipeData->sections[0].rInner;
double rOuter = beampipeData->sections[0].rOuter;
Vector3D oCyl( 0.5*(rInner+rOuter) , 0. , 0. ) ;
VolCylinder pipeSurf( envelope , SurfaceType( SurfaceType::Helper ) ,
0.5*(rOuter-rInner) , 0.5*(rOuter-rInner), oCyl ) ;
volSurfaceList( tube )->push_back( pipeSurf ) ;
tube.addExtension< ConicalSupportData >( beampipeData ) ;
//--------------------------------------
tube.setVisAttributes( theDetector, x_beampipe.visStr(), envelope );
//debug
std::cout << "============ConicalSupportData============" << std::endl;
for(unsigned int i=0;i<beampipeData->sections.size();i++){
std::cout << std::setw(8) << beampipeData->sections[i].zPos /dd4hep::mm
<< std::setw(8) << beampipeData->sections[i].rInner /dd4hep::mm
<< std::setw(8) << beampipeData->sections[i].rOuter /dd4hep::mm
<< std::endl;
}
return tube;
}
DECLARE_DETELEMENT(DD4hep_CRDBeamPipe_v01, create_detector)
DD4HEP_INSTANTIATE_SHAPE_HANDLE(TGeoScaledShape);