Newer
Older
#ifndef HOUGHCLUSTERINGALG_C
#define HOUGHCLUSTERINGALG_C
#include "Algorithm/HoughClusteringAlg.h"
#include <algorithm>
#include <cmath>
#include <set>
#include "TCanvas.h"
using namespace std;
StatusCode HoughClusteringAlg::ReadSettings(Cyber::Settings& m_settings){
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
settings = m_settings;
// ECAL geometry settings
//if(settings.map_floatPars.find("cell_size")==settings.map_floatPars.end())
// settings.map_floatPars["cell_size"] = 10; // unit: mm
//if(settings.map_floatPars.find("ecal_inner_radius")==settings.map_floatPars.end())
// settings.map_floatPars["ecal_inner_radius"] = 1860; // unit: mm
// Hough space settings
// alpha in V plane (bars parallel to z axis)
if(settings.map_floatPars.find("alpha_lowV")==settings.map_floatPars.end())
settings.map_floatPars["alpha_lowV"] = -0.1;
if(settings.map_floatPars.find("alpha_highV")==settings.map_floatPars.end())
settings.map_floatPars["alpha_highV"] = 2.*TMath::Pi();
if(settings.map_intPars.find("Nbins_alphaV")==settings.map_intPars.end())
settings.map_intPars["Nbins_alphaV"] = 3000;
if(settings.map_floatPars.find("bin_width_alphaV")==settings.map_floatPars.end())
settings.map_floatPars["bin_width_alphaV"] = ( settings.map_floatPars["alpha_highV"] - settings.map_floatPars["alpha_lowV"] ) / (double)settings.map_intPars["Nbins_alphaV"];
// double bin_width_alphaV = (alpha_highV - alpha_lowV) / (double)Nbins_alphaV;
// alpha in U plane (bars perpendicular to z axis)
if(settings.map_floatPars.find("alpha_lowU")==settings.map_floatPars.end())
settings.map_floatPars["alpha_lowU"] = 0.;
if(settings.map_floatPars.find("alpha_highU")==settings.map_floatPars.end())
settings.map_floatPars["alpha_highU"] = TMath::Pi();
if(settings.map_intPars.find("Nbins_alphaU")==settings.map_intPars.end())
settings.map_intPars["Nbins_alphaU"] = 5000;
if(settings.map_floatPars.find("bin_width_alphaU")==settings.map_floatPars.end())
settings.map_floatPars["bin_width_alphaU"] = ( settings.map_floatPars["alpha_highU"] - settings.map_floatPars["alpha_lowU"] ) / (double)settings.map_intPars["Nbins_alphaU"];
// double bin_width_alphaU = (alpha_highU - alpha_lowU) / (double)Nbins_alphaU;
// rho
if(settings.map_floatPars.find("rho_low")==settings.map_floatPars.end())
settings.map_floatPars["rho_low"] = -50.;
if(settings.map_floatPars.find("rho_high")==settings.map_floatPars.end())
settings.map_floatPars["rho_high"] = 50.;
if(settings.map_intPars.find("Nbins_rho")==settings.map_intPars.end())
settings.map_intPars["Nbins_rho"] = 20; // (rho_high - rho_low)/5
if(settings.map_floatPars.find("bin_width_rho")==settings.map_floatPars.end())
settings.map_floatPars["bin_width_rho"] = ( settings.map_floatPars["rho_high"] - settings.map_floatPars["rho_low"] ) / (double)settings.map_intPars["Nbins_rho"];
// Algorithm parameter settings
if(settings.map_intPars.find("th_Layers")==settings.map_intPars.end())
settings.map_intPars["th_Layers"] = 10;
if(settings.map_intPars.find("th_peak")==settings.map_intPars.end())
settings.map_intPars["th_peak"] = 3;
if(settings.map_intPars.find("th_continueN")==settings.map_intPars.end())
settings.map_intPars["th_continueN"] = 3;
if(settings.map_floatPars.find("th_AxisE")==settings.map_floatPars.end())
settings.map_floatPars["th_AxisE"] = 0.15; // unit: GeV
if(settings.map_floatPars.find("th_overlapE")==settings.map_floatPars.end())
settings.map_floatPars["th_overlapE"] = 0.5;
if(settings.map_floatPars.find("th_dAlpha1")==settings.map_floatPars.end())
settings.map_floatPars["th_dAlpha1"] = 0.1;
if(settings.map_floatPars.find("th_dAlpha2")==settings.map_floatPars.end())
settings.map_floatPars["th_dAlpha2"] = 0.05;
if(settings.map_floatPars.find("th_ERatio")==settings.map_floatPars.end())
settings.map_floatPars["th_ERatio"] = 0.04;
if(settings.map_stringPars.find("ReadinLocalMaxName")==settings.map_stringPars.end())
settings.map_stringPars["ReadinLocalMaxName"] = "AllLocalMax";
if(settings.map_stringPars.find("LeftLocalMaxName")==settings.map_stringPars.end())
settings.map_stringPars["LeftLocalMaxName"] = "LeftLocalMax";
if(settings.map_stringPars.find("OutputLongiClusName")==settings.map_stringPars.end())
settings.map_stringPars["OutputLongiClusName"] = "HoughAxis";
return StatusCode::SUCCESS;
}
StatusCode HoughClusteringAlg::Initialize( CyberDataCol& m_datacol ){
p_HalfClusterU.clear();
p_HalfClusterV.clear();
for(int ih=0; ih<m_datacol.map_HalfCluster["HalfClusterColU"].size(); ih++)
p_HalfClusterU.push_back( m_datacol.map_HalfCluster["HalfClusterColU"][ih].get() );
for(int ih=0; ih<m_datacol.map_HalfCluster["HalfClusterColV"].size(); ih++)
p_HalfClusterV.push_back( m_datacol.map_HalfCluster["HalfClusterColV"][ih].get() );
//p_HalfClusterU = m_datacol.map_HalfCluster["HalfClusterColU"];
//p_HalfClusterV = m_datacol.map_HalfCluster["HalfClusterColV"];
return StatusCode::SUCCESS;
}
StatusCode HoughClusteringAlg::RunAlgorithm( CyberDataCol& m_datacol ){
//if( (p_HalfClusterU.size()+p_HalfClusterV.size())<1 ){
// std::cout << "HoughClusteringAlg: No HalfCluster input"<<std::endl;
// return StatusCode::SUCCESS;
//}
if(p_HalfClusterV.size()==0){ std::cout<<" HoughClusteringAlg: No HalfClusterV in present data collection! "<<std::endl; }
if(p_HalfClusterU.size()==0){ std::cout<<" HoughClusteringAlg: No HalfClusterU in present data collection! "<<std::endl; }
//cout<<"Readin HalfCluster size: "<<p_HalfClusterV.size()<<", "<<p_HalfClusterU.size()<<endl;
//std::vector<const Cyber::CaloHalfCluster*> m_refHFClusVCol; m_refHFClusVCol.clear();
// Processing V(xy) plane
for(int it=0; it<p_HalfClusterV.size(); it++){ // process each HalfCluster respectively
m_localMaxVCol.clear();
std::vector<const Cyber::Calo1DCluster*> tmp_localMaxVCol = p_HalfClusterV[it]->getLocalMaxCol(settings.map_stringPars["ReadinLocalMaxName"]);
for(int il=0; il<tmp_localMaxVCol.size(); il++){
if(tmp_localMaxVCol[il]->getDlayer()<=settings.map_intPars["th_Layers"])
m_localMaxVCol.push_back(tmp_localMaxVCol[il]);
}
if(m_localMaxVCol.size()<settings.map_intPars["th_peak"]){
//std::cout << " yyy: m_localMaxVCol.size()<th_peak, continue" << std::endl;
continue;
}
//cout<<" HoughClusteringAlg: Find Hough axis in HalfCluster "<<it<<". Local maximum size V = "<<m_localMaxVCol.size()<<endl;
// cout<<" HoughClusteringAlg: Creating m_HoughObjectsV"<<endl;
std::vector<Cyber::HoughObject> m_HoughObjectsV; m_HoughObjectsV.clear();
for(int il=0; il<m_localMaxVCol.size(); il++){
Cyber::HoughObject m_obj(m_localMaxVCol[il], Cyber::CaloUnit::barsize, Cyber::CaloUnit::ecal_innerR);
m_HoughObjectsV.push_back(m_obj);
}
//cout<<" HoughClusteringAlg: HoughObjectV size "<<m_HoughObjectsV.size()<<endl;
// cout<<" HoughClusteringAlg: Hough transformation"<<endl;
HoughTransformation(m_HoughObjectsV);
// cout<<" HoughClusteringAlg: Creating hough_spaceV"<<endl;
Cyber::HoughSpace hough_spaceV(settings.map_floatPars["alpha_lowV"], settings.map_floatPars["alpha_highV"],
settings.map_floatPars["bin_width_alphaV"], settings.map_intPars["Nbins_alphaV"],
settings.map_floatPars["rho_low"], settings.map_floatPars["rho_high"],
settings.map_floatPars["bin_width_rho"], settings.map_intPars["Nbins_rho"]);
//cout<<" HoughClusteringAlg: Filling hough_spaceV"<<endl;
FillHoughSpace(m_HoughObjectsV, hough_spaceV);
//cout<<" HoughClusteringAlg: Finding clusters from Hough space"<<endl;
//Create output HoughClusters
m_longiClusVCol.clear();
ClusterFinding(m_HoughObjectsV, hough_spaceV, m_longiClusVCol );
CleanClusters(m_longiClusVCol);
//cout << " HoughClusteringAlg: final output m_longiClusVCol.size() = " << m_longiClusVCol.size() << endl;
m_datacol.map_HalfCluster["bkHalfCluster"].insert( m_datacol.map_HalfCluster["bkHalfCluster"].end(), m_longiClusVCol.begin(), m_longiClusVCol.end() );
std::vector<const Cyber::CaloHalfCluster*> m_constHoughCluster; m_constHoughCluster.clear();
std::vector<const Cyber::Calo1DCluster*> left_localMaxVCol; left_localMaxVCol.clear();
std::vector<const Cyber::Calo1DCluster*> m_houghMax; m_houghMax.clear();
for(int is=0; is<tmp_localMaxVCol.size(); is++){
bool fl_incluster = false;
for(int ic=0; ic<m_longiClusVCol.size(); ic++){
std::vector<const Cyber::Calo1DCluster*> p_showers = m_longiClusVCol[ic]->getCluster();
if( find(p_showers.begin(), p_showers.end(), tmp_localMaxVCol[is])!=p_showers.end() ) { fl_incluster = true; break; }
}
if(!fl_incluster && find(left_localMaxVCol.begin(), left_localMaxVCol.end(), tmp_localMaxVCol[is])==left_localMaxVCol.end() ) left_localMaxVCol.push_back(tmp_localMaxVCol[is]);
m_houghMax.push_back( tmp_localMaxVCol[is] );
}
for(int ic=0; ic<m_longiClusVCol.size(); ic++)
m_constHoughCluster.push_back(m_longiClusVCol[ic].get());
//m_refHFClusVCol.insert(m_refHFClusVCol.end(), m_constHoughCluster.begin(), m_constHoughCluster.end());
p_HalfClusterV[it]->setLocalMax("HoughLocalMax", m_houghMax);
p_HalfClusterV[it]->setLocalMax(settings.map_stringPars["LeftLocalMaxName"], left_localMaxVCol);
p_HalfClusterV[it]->setHalfClusters(settings.map_stringPars["OutputLongiClusName"], m_constHoughCluster);
m_houghMax.clear();
left_localMaxVCol.clear();
} // end of V plane
//cout<<"Finish Hough in V. Reference HFClusterV size "<<m_refHFClusVCol.size()<<endl;
// Processing U(r-phi) plane
for(int it=0; it<p_HalfClusterU.size(); it++){ // process each HalfCluster respectively
m_localMaxUCol.clear();
std::vector<const Cyber::Calo1DCluster*> tmp_localMaxUCol = p_HalfClusterU[it]->getLocalMaxCol(settings.map_stringPars["ReadinLocalMaxName"]);
for(int il=0; il<tmp_localMaxUCol.size(); il++){
if(tmp_localMaxUCol[il]->getDlayer()<=settings.map_intPars["th_Layers"])
m_localMaxUCol.push_back(tmp_localMaxUCol[il]);
}
if(m_localMaxUCol.size()<settings.map_intPars["th_peak"]){
//std::cout << " yyy: m_localMaxUCol.size()<th_peak, continue" << std::endl;
continue;
}
//cout<<" HoughClusteringAlg: Find Hough axis in HalfCluster "<<it<<". Local maximum size U = "<<m_localMaxUCol.size()<<endl;
// cout<<" HoughClusteringAlg: Creating m_HoughObjectsU"<<endl;
std::vector<Cyber::HoughObject> m_HoughObjectsU; m_HoughObjectsU.clear();
for(int il=0; il<m_localMaxUCol.size(); il++){
Cyber::HoughObject m_obj(m_localMaxUCol[il], Cyber::CaloUnit::barsize, Cyber::CaloUnit::ecal_innerR);
m_HoughObjectsU.push_back(m_obj);
}
//cout<<" HoughClusteringAlg: HoughObjectU size "<<m_HoughObjectsU.size()<<endl;
// cout<<" HoughClusteringAlg: Hough transformation"<<endl;
HoughTransformation(m_HoughObjectsU);
// cout<<" HoughClusteringAlg: Creating hough_spaceU"<<endl;
Cyber::HoughSpace hough_spaceU(settings.map_floatPars["alpha_lowU"], settings.map_floatPars["alpha_highU"],
settings.map_floatPars["bin_width_alphaU"], settings.map_intPars["Nbins_alphaU"],
settings.map_floatPars["rho_low"], settings.map_floatPars["rho_high"],
settings.map_floatPars["bin_width_rho"], settings.map_intPars["Nbins_rho"]);
//cout<<" HoughClusteringAlg: Filling hough_spaceU"<<endl;
FillHoughSpace(m_HoughObjectsU, hough_spaceU);
//cout<<" HoughClusteringAlg: Finding clusters from Hough space"<<endl;
//Create output HoughClusters
m_longiClusUCol.clear();
ClusterFinding(m_HoughObjectsU, hough_spaceU, m_longiClusUCol );
CleanClusters(m_longiClusUCol);
//cout << " HoughClusteringAlg: final output m_longiClusUCol.size() = " << m_longiClusUCol.size() << endl;
m_datacol.map_HalfCluster["bkHalfCluster"].insert( m_datacol.map_HalfCluster["bkHalfCluster"].end(), m_longiClusUCol.begin(), m_longiClusUCol.end() );
std::vector<const Cyber::CaloHalfCluster*> m_constHoughCluster; m_constHoughCluster.clear();
std::vector<const Cyber::Calo1DCluster*> left_localMaxUCol; left_localMaxUCol.clear();
std::vector<const Cyber::Calo1DCluster*> m_houghMax; m_houghMax.clear();
for(int is=0; is<tmp_localMaxUCol.size(); is++){
bool fl_incluster = false;
for(int ic=0; ic<m_longiClusUCol.size(); ic++){
std::vector<const Cyber::Calo1DCluster*> p_showers = m_longiClusUCol[ic]->getCluster();
if( find(p_showers.begin(), p_showers.end(), tmp_localMaxUCol[is])!=p_showers.end() ) { fl_incluster = true; break; }
}
if(!fl_incluster && find(left_localMaxUCol.begin(), left_localMaxUCol.end(), tmp_localMaxUCol[is])==left_localMaxUCol.end() ) left_localMaxUCol.push_back(tmp_localMaxUCol[is]);
m_houghMax.push_back( tmp_localMaxUCol[is] );
}
for(int ic=0; ic<m_longiClusUCol.size(); ic++)
m_constHoughCluster.push_back(m_longiClusUCol[ic].get());
p_HalfClusterU[it]->setLocalMax("HoughLocalMax", m_houghMax);
p_HalfClusterU[it]->setLocalMax(settings.map_stringPars["LeftLocalMaxName"], left_localMaxUCol);
p_HalfClusterU[it]->setHalfClusters(settings.map_stringPars["OutputLongiClusName"], m_constHoughCluster);
m_houghMax.clear();
left_localMaxUCol.clear();
} // end of U plane
/*
for(int it=0; it<p_HalfClusterU.size(); it++){
m_localMaxUCol.clear();
std::vector<const Cyber::Calo1DCluster*> tmp_localMaxUCol = p_HalfClusterU[it]->getLocalMaxCol(settings.map_stringPars["ReadinLocalMaxName"]);
for(int il=0; il<tmp_localMaxUCol.size(); il++){
if(tmp_localMaxUCol[il]->getDlayer()<=settings.map_intPars["th_Layers"])
m_localMaxUCol.push_back(tmp_localMaxUCol[il]);
}
if(m_localMaxUCol.size()<settings.map_intPars["th_peak"]){
continue;
}
//cout<<" HoughClusteringAlg: Find Hough axis in HalfCluster "<<it<<". Local maximum size U = "<<m_localMaxUCol.size()<<endl;
std::map<int, std::vector<Cyber::HoughObject> > map_HoughObjectsU_module; map_HoughObjectsU_module.clear();
std::map<int, std::vector<Cyber::HoughObject> > map_HoughObjectsU_crack; map_HoughObjectsU_crack.clear();
for(int il=0; il<m_localMaxUCol.size(); il++){
int module = m_localMaxUCol[il]->getTowerID()[0][0];
Cyber::HoughObject m_obj(m_localMaxUCol[il], Cyber::CaloUnit::barsize, Cyber::CaloUnit::ecal_innerR);
map_HoughObjectsU_module[module].push_back(m_obj);
}
for(int iref=0; iref<m_refHFClusVCol.size(); iref++){
double tmp_phi = m_refHFClusVCol[iref]->getPos().Phi(); // yyy: tmp_phi ranges from -pi to pi
//cout<<" Ref HFCluster phi: "<<tmp_phi<<endl;
double intPart, fracPart;
fracPart = modf((tmp_phi+TMath::Pi())/(TMath::Pi()/4.), &intPart); // yyy: tmp_phi + TMath::Pi() ranges from 0 to 2pi
//cout<<" Int part "<<intPart<<", frac part "<<fracPart<<endl;
if(fracPart<0.489 || fracPart>0.711) continue; //Not in crack region.
int iCrack = intPart+2;
if(iCrack>=8) iCrack = iCrack-8;
//cout<<" Crack No: "<<iCrack<<endl;
for(int il=0; il<m_localMaxUCol.size(); il++){
if( (m_localMaxUCol[il]->getTowerID()[0][0]==iCrack && m_localMaxUCol[il]->getTowerID()[0][1]==4) ||
(iCrack!=7 && m_localMaxUCol[il]->getTowerID()[0][0]==iCrack+1 && m_localMaxUCol[il]->getTowerID()[0][1]==1) ||
(iCrack==7 && m_localMaxUCol[il]->getTowerID()[0][0]==0 && m_localMaxUCol[il]->getTowerID()[0][1]==1)){
Cyber::HoughObject m_obj(m_localMaxUCol[il], Cyber::CaloUnit::barsize, Cyber::CaloUnit::ecal_innerR, tmp_phi);
map_HoughObjectsU_crack[iCrack].push_back(m_obj);
}
}
}
//cout<<" Module HoughObject: "<<endl;
//for(auto iter: map_HoughObjectsU_module)
//printf(" Module #%d: object size %d \n", iter.first, iter.second.size());
//cout<<" Crack HoughObject: "<<endl;
//for(auto iter: map_HoughObjectsU_crack)
//printf(" Crack #%d: object size %d \n", iter.first, iter.second.size());
//Do hough transformation for HoughObjects
for(auto &imodule: map_HoughObjectsU_module) HoughTransformation(imodule.second);
for(auto &icrack: map_HoughObjectsU_crack) HoughTransformation(icrack.second);
//Fill Hough space
std::map<int, Cyber::HoughSpace> hough_spacesU_module;
std::map<int, Cyber::HoughSpace> hough_spacesU_crack;
for(auto &imodule: map_HoughObjectsU_module){
Cyber::HoughSpace hspaceU(settings.map_floatPars["alpha_lowU"], settings.map_floatPars["alpha_highU"],
settings.map_floatPars["bin_width_alphaU"], settings.map_intPars["Nbins_alphaU"],
settings.map_floatPars["rho_low"], settings.map_floatPars["rho_high"],
settings.map_floatPars["bin_width_rho"], settings.map_intPars["Nbins_rho"]);
FillHoughSpace(imodule.second, hspaceU);
hough_spacesU_module[imodule.first] = hspaceU;
}
for(auto &icrack: map_HoughObjectsU_crack){
Cyber::HoughSpace hspaceU(settings.map_floatPars["alpha_lowU"], settings.map_floatPars["alpha_highU"],
settings.map_floatPars["bin_width_alphaU"], settings.map_intPars["Nbins_alphaU"],
settings.map_floatPars["rho_low"], settings.map_floatPars["rho_high"],
settings.map_floatPars["bin_width_rho"], settings.map_intPars["Nbins_rho"]);
FillHoughSpace(icrack.second, hspaceU);
hough_spacesU_crack[icrack.first] = hspaceU;
}
//cout<<" Module Hough space size: "<<hough_spacesU_module.size()<<endl;
//cout<<" Crack Hough space size: "<<hough_spacesU_module.size()<<endl;
m_longiClusUCol.clear();
for(auto &imodule: map_HoughObjectsU_module)
ClusterFinding(imodule.second, hough_spacesU_module[imodule.first], m_longiClusUCol );
for(auto &icrack: map_HoughObjectsU_crack)
ClusterFinding(icrack.second, hough_spacesU_crack[icrack.first], m_longiClusUCol );
//cout<<" Hough axis size: "<<m_longiClusUCol.size()<<endl;
CleanClusters(m_longiClusUCol);
m_datacol.map_HalfCluster["bkHalfCluster"].insert( m_datacol.map_HalfCluster["bkHalfCluster"].end(), m_longiClusUCol.begin(), m_longiClusUCol.end() );
//cout<<" Hough axis size after cleaning: "<<m_longiClusUCol.size()<<endl;
//cout<<" Print axis "<<endl;
//for(int i=0; i<m_longiClusUCol.size(); i++){
// printf(" Axis #%d: hit size %d, type %d, address %p \n", i, m_longiClusUCol[i]->getCluster().size(), m_longiClusUCol[i]->getType(), m_longiClusUCol[i].get() );
//}
std::vector<const Cyber::CaloHalfCluster*> m_constHoughCluster; m_constHoughCluster.clear();
std::vector<const Cyber::Calo1DCluster*> left_localMaxUCol; left_localMaxUCol.clear();
std::vector<const Cyber::Calo1DCluster*> m_houghMax; m_houghMax.clear();
for(int is=0; is<tmp_localMaxUCol.size(); is++){
bool fl_incluster = false;
for(int ic=0; ic<m_longiClusUCol.size(); ic++){
std::vector<const Cyber::Calo1DCluster*> p_showers = m_longiClusUCol[ic]->getCluster();
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
if( find(p_showers.begin(), p_showers.end(), tmp_localMaxUCol[is])!=p_showers.end() ) { fl_incluster = true; break; }
}
if(!fl_incluster && find(left_localMaxUCol.begin(), left_localMaxUCol.end(), tmp_localMaxUCol[is])==left_localMaxUCol.end() ) left_localMaxUCol.push_back(tmp_localMaxUCol[is]);
else m_houghMax.push_back( tmp_localMaxUCol[is] );
}
for(int ic=0; ic<m_longiClusUCol.size(); ic++)
m_constHoughCluster.push_back(m_longiClusUCol[ic].get());
p_HalfClusterU[it]->setLocalMax("HoughLocalMax", m_houghMax);
p_HalfClusterU[it]->setLocalMax(settings.map_stringPars["LeftLocalMaxName"], left_localMaxUCol);
p_HalfClusterU[it]->setHalfClusters(settings.map_stringPars["OutputLongiClusName"], m_constHoughCluster);
m_houghMax.clear();
left_localMaxUCol.clear();
} // end of U plane
*/
return StatusCode::SUCCESS;
}
StatusCode HoughClusteringAlg::ClearAlgorithm(){
p_HalfClusterV.clear();
p_HalfClusterU.clear();
m_localMaxVCol.clear();
m_localMaxUCol.clear();
m_longiClusVCol.clear();
m_longiClusUCol.clear();
return StatusCode::SUCCESS;
};
StatusCode HoughClusteringAlg::HoughTransformation(std::vector<Cyber::HoughObject>& Hobjects){
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
if(Hobjects.size()<settings.map_intPars["th_peak"]) return StatusCode::SUCCESS;
// range of alpha of different lines
double range12[2] = {0, 0};
double range34[2] = {0, 0};
for(int iobj=0; iobj<Hobjects.size(); iobj++){
int t_slayer = Hobjects[iobj].getSlayer();
//SetLineRange(t_module, t_slayer, range12, range34);
double point_Phi = Hobjects[iobj].getCenterPoint().Phi();
double alpha_min, alpha_max;
if(t_slayer==0){
if(point_Phi<TMath::PiOver2()){
alpha_min = TMath::PiOver2();
alpha_max = TMath::Pi();
}
else{
alpha_min = 0;
alpha_max = TMath::PiOver2();
}
}
else{
if( point_Phi < 5*TMath::Pi()/8. && point_Phi >= TMath::PiOver2() ){
alpha_min = -0.1;
alpha_max = TMath::PiOver4();
}
else if(point_Phi>3*TMath::Pi()/8. && point_Phi<TMath::PiOver2()){
alpha_min = 7.*TMath::Pi()/4.;
alpha_max = 2*TMath::Pi();
}
else{
alpha_min = floor(4*point_Phi/TMath::Pi() - 1.5)*TMath::PiOver4() - TMath::PiOver4();
alpha_max = floor(4*point_Phi/TMath::Pi() - 1.5)*TMath::PiOver4() + TMath::PiOver4();
}
if(alpha_min<=0 && alpha_max<=0){
alpha_min += 2*TMath::Pi();
alpha_max += 2*TMath::Pi();
}
}
TF1 line1("line1", "[0]*cos(x)+[1]*sin(x)", alpha_min, alpha_max);
TF1 line2("line2", "[0]*cos(x)+[1]*sin(x)", alpha_min, alpha_max);
//TF1 line3("line3", "[0]*cos(x)+[1]*sin(x)", range34[0], range34[1]);
//TF1 line4("line4", "[0]*cos(x)+[1]*sin(x)", range34[0], range34[1]);
if(t_slayer==0){
line1.SetParameters( Hobjects[iobj].getUpperPoint().X(), Hobjects[iobj].getUpperPoint().Y() );
line2.SetParameters( Hobjects[iobj].getLowerPoint().X(), Hobjects[iobj].getLowerPoint().Y() );
//line3.SetParameters( Hobjects[iobj].getPointUL().X(), Hobjects[iobj].getPointUL().Y() );
//line4.SetParameters( Hobjects[iobj].getPointDR().X(), Hobjects[iobj].getPointDR().Y() );
}
else if(t_slayer==1){
//if(t_module % 2 == 0){
line1.SetParameters( Hobjects[iobj].getUpperPoint().X(), Hobjects[iobj].getUpperPoint().Y() );
line2.SetParameters( Hobjects[iobj].getLowerPoint().X(), Hobjects[iobj].getLowerPoint().Y() );
//line3.SetParameters( Hobjects[iobj].getPointUL().X(), Hobjects[iobj].getPointUL().Y() );
//line4.SetParameters( Hobjects[iobj].getPointDR().X(), Hobjects[iobj].getPointDR().Y() );
//}else{
// line1.SetParameters( Hobjects[iobj].getPointU().X(), Hobjects[iobj].getPointU().Y() );
// line2.SetParameters( Hobjects[iobj].getPointD().X(), Hobjects[iobj].getPointD().Y() );
// line3.SetParameters( Hobjects[iobj].getPointL().X(), Hobjects[iobj].getPointL().Y() );
// line4.SetParameters( Hobjects[iobj].getPointR().X(), Hobjects[iobj].getPointR().Y() );
//}
}
Hobjects[iobj].setHoughLine(line1, line2);
}
return StatusCode::SUCCESS;
} // HoughTransformation() end
/*
StatusCode HoughClusteringAlg::SetLineRange(int module, int slayer, double *range12, double* range34){
// range12: ur, dl, u, d
// range34: ul, dr, l, r
if(slayer == 0){
range12[0] = 0.;
range12[1] = TMath::Pi()/2.;
range34[0] = TMath::Pi()/2.;
range34[1] = TMath::Pi();
}
else if(slayer == 1){
switch(module){
case 0:{
range12[0] = -0.1;
range12[1] = TMath::Pi()/4.;
range34[0] = 7.*TMath::Pi()/4.;
range34[1] = range34[0] + TMath::Pi()/4.;
break;
}
case 1:{
range12[0] = TMath::Pi()/4.;
range12[1] = range12[0] + TMath::Pi()/4.;
range34[0] = 0;
range34[1] = range34[0] + TMath::Pi()/4.;
break;
}
case 2:{
range12[0] = TMath::Pi()/4.;
range12[1] = range12[0] + TMath::Pi()/4.;
range34[0] = TMath::Pi()/2;
range34[1] = range34[0] + TMath::Pi()/4.;
break;
}
case 3:{
range12[0] = TMath::Pi()/2.;
range12[1] = range12[0] + TMath::Pi()/4.;
range34[0] = 3.*TMath::Pi()/4.;
range34[1] = range34[0] + TMath::Pi()/4.;
break;
}
case 4:{
range12[0] = TMath::Pi();
range12[1] = range12[0] + TMath::Pi()/4.;
range34[0] = 3.*TMath::Pi()/4.;
range34[1] = range34[0] + TMath::Pi()/4.;
break;
}
case 5:{
range12[0] = 5.*TMath::Pi()/4.;
range12[1] = range12[0] + TMath::Pi()/4.;
range34[0] = TMath::Pi();
range34[1] = range34[0] + TMath::Pi()/4.;
break;
}
case 6:{
range12[0] = 5.*TMath::Pi()/4.;
range12[1] = range12[0] + TMath::Pi()/4.;
range34[0] = 3.*TMath::Pi()/2.;
range34[1] = range34[0] + TMath::Pi()/4.;
break;
}
case 7:{
range12[0] = 3.*TMath::Pi()/2.;
range12[1] = range12[0] + TMath::Pi()/4.;
range34[0] = 7.*TMath::Pi()/4.;
range34[1] = range34[0] + TMath::Pi()/4.;
break;
}
default:{
cout << "Wrong module: module = " << module << endl;
}
}
}
return StatusCode::SUCCESS;
} // SetLineRange() end
*/
StatusCode HoughClusteringAlg::FillHoughSpace(vector<Cyber::HoughObject>& Hobjects, Cyber::HoughSpace& Hspace){
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// Fill Hough space
// Loop Hough objects
for(int ih=0; ih<Hobjects.size(); ih++){
TF1 line1 = Hobjects[ih].getHoughLine1();
TF1 line2 = Hobjects[ih].getHoughLine2();
//TF1 line3 = Hobjects[ih].getHoughLine3();
//TF1 line4 = Hobjects[ih].getHoughLine4();
// line1 and line2 share the same range in alpha, so does line3 and line4
double range_min, range_max;
line1.GetRange(range_min, range_max);
// Get bin num in alpha axis
int bin_min = Hspace.getAlphaBin(range_min);
int bin_max = Hspace.getAlphaBin(range_max);
//int bin_34_min = Hspace.getAlphaBin(range_34_min);
//int bin_34_max = Hspace.getAlphaBin(range_34_max);
//if (bin_12_max == bin_34_min) bin_34_min ++;
//if (bin_34_max == bin_12_min) bin_12_min ++;
// Loop for alpha bins, line1 and line2
for(int ialpha=bin_min; ialpha<=bin_max; ialpha++) {
// The lines should be monotone at this range
double line1_rho1 = line1.Eval( Hspace.getAlphaBinLowEdge(ialpha) );
double line1_rho2 = line1.Eval( Hspace.getAlphaBinUpEdge(ialpha) );
double line2_rho1 = line2.Eval( Hspace.getAlphaBinLowEdge(ialpha) );
double line2_rho2 = line2.Eval( Hspace.getAlphaBinUpEdge(ialpha) );
double line1_rho_min = TMath::Min(line1_rho1, line1_rho2);
double line1_rho_max = TMath::Max(line1_rho1, line1_rho2);
double line2_rho_min = TMath::Min(line2_rho1, line2_rho2);
double line2_rho_max = TMath::Max(line2_rho1, line2_rho2);
if(line1_rho_min>line1_rho_max || line2_rho_min>line2_rho_max){
cout << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" << endl;
}
double rho_min = TMath::Min( line1_rho_min, line2_rho_min);
double rho_max = TMath::Max( line1_rho_max, line2_rho_max);
if(rho_max<settings.map_floatPars["rho_low"] || rho_min>settings.map_floatPars["rho_high"]) continue;
int nbin_rho_min = TMath::Max( int(ceil( (rho_min-settings.map_floatPars["rho_low"]) / settings.map_floatPars["bin_width_rho"] )), 1 );
int nbin_rho_max = TMath::Min( int(ceil( (rho_max-settings.map_floatPars["rho_low"]) / settings.map_floatPars["bin_width_rho"] )), settings.map_intPars["Nbins_rho"] );
for(int irho=nbin_rho_min; irho<=nbin_rho_max; irho++){
Hspace.AddBinHobj(ialpha, irho, ih);
}
} // end loop alpha bin, line1 and line2
/* // Loop for alpha bins, line3 and line4
for(int ialpha=bin_34_min; ialpha<=bin_34_max; ialpha++) {
// The lines should be monotone at this range
double line3_rho1 = line3.Eval( Hspace.getAlphaBinLowEdge(ialpha) );
double line3_rho2 = line3.Eval( Hspace.getAlphaBinUpEdge(ialpha) );
double line4_rho1 = line4.Eval( Hspace.getAlphaBinLowEdge(ialpha) );
double line4_rho2 = line4.Eval( Hspace.getAlphaBinUpEdge(ialpha) );
double line3_rho_min = TMath::Min(line3_rho1, line3_rho2);
double line3_rho_max = TMath::Max(line3_rho1, line3_rho2);;
double line4_rho_min = TMath::Min(line4_rho1, line4_rho2);
double line4_rho_max = TMath::Max(line4_rho1, line4_rho2);
if(line3_rho_min>line3_rho_max || line4_rho_min>line4_rho_max){
cout << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" << endl;
}
double rho_min = TMath::Min( line3_rho_min, line4_rho_min);
double rho_max = TMath::Max( line3_rho_max, line4_rho_max);
if(rho_max<settings.map_floatPars["rho_low"] || rho_min>settings.map_floatPars["rho_high"]) continue;
int nbin_rho_min = TMath::Max( int(ceil( (rho_min-settings.map_floatPars["rho_low"]) / settings.map_floatPars["bin_width_rho"] )), 1 );
int nbin_rho_max = TMath::Min( int(ceil( (rho_max-settings.map_floatPars["rho_low"]) / settings.map_floatPars["bin_width_rho"] )), settings.map_intPars["Nbins_rho"] );
for(int irho=nbin_rho_min; irho<=nbin_rho_max; irho++){
Hspace.AddBinHobj(ialpha, irho, ih);
}
} // end loop alpha bin, line3 and line4
*/
} // End loop Hough objects
return StatusCode::SUCCESS;
} // FillHoughSpace() end
StatusCode HoughClusteringAlg::ClusterFinding(vector<Cyber::HoughObject>& Hobjects, Cyber::HoughSpace& Hspace,
std::vector<std::shared_ptr<Cyber::CaloHalfCluster>>& m_longiClusCol ){
if(Hobjects.size()==0) return StatusCode::SUCCESS;
map< pair<int, int>, set<int> > Hough_bins = Hspace.getHoughBins();
// transform candidate to longicluster
vector<std::shared_ptr<Cyber::CaloHalfCluster>> m_clusCol; m_clusCol.clear();
for(auto ihb : Hough_bins){
if(ihb.second.size()<settings.map_intPars["th_peak"]) continue;
std::shared_ptr<Cyber::CaloHalfCluster> m_clus = std::make_shared<Cyber::CaloHalfCluster>();
for(auto it = (ihb.second).begin(); it!=(ihb.second).end(); it++){
m_clus->addUnit(Hobjects[*it].getLocalMax());
}
double t_alpha = Hspace.getAlphaBinCenter((ihb.first).first);
double t_rho = Hspace.getRhoBinCenter((ihb.first).second);
m_clus->setHoughPars(t_alpha, t_rho);
if( !m_clus->isContinueN(settings.map_intPars["th_continueN"]) ){
continue;
}
m_clus->setType(100); //EM-type axis.
m_clus->getLinkedMCPfromUnit();
m_clusCol.push_back(m_clus);
}
// Clean cluster
//CleanClusters(m_clusCol);
//bk_HFclus.insert( bk_HFclus.end(), m_clusCol.begin(), m_clusCol.end() );
m_longiClusCol.insert( m_longiClusCol.end(), m_clusCol.begin(), m_clusCol.end() );
return StatusCode::SUCCESS;
} // ClusterFinding() end
StatusCode HoughClusteringAlg::CleanClusters( std::vector<std::shared_ptr<Cyber::CaloHalfCluster>>& m_longiClusCol){
if(m_longiClusCol.size()==0) return StatusCode::SUCCESS;
// Remove repeated tracks
for(int ic=0; ic<m_longiClusCol.size(); ic++){
for(int jc=0; jc<m_longiClusCol.size(); jc++){
if(ic>=m_longiClusCol.size()) ic--;
if(ic==jc) continue;
if( m_longiClusCol[ic].get()->isSubset(m_longiClusCol[jc].get()) ){ //jc is the subset of ic. remove jc.
//delete m_longiClusCol[jc]; m_longiClusCol[jc] = NULL;
m_longiClusCol.erase(m_longiClusCol.begin()+jc );
jc--;
if(ic>jc+1) ic--;
}
}}
//Depart the HoughCluster to 2 sub-clusters if it has blank in middle.
for(int ic=0; ic<m_longiClusCol.size(); ic++){
int m_nhit = m_longiClusCol[ic].get()->getCluster().size();
m_longiClusCol[ic].get()->sortBarShowersByLayer();
for(int ih=0; ih<m_nhit-1; ih++){
if(m_longiClusCol[ic].get()->getCluster()[ih+1]->getDlayer() - m_longiClusCol[ic].get()->getCluster()[ih]->getDlayer() > 2){
//Cyber::CaloHalfCluster* clus_head = new Cyber::CaloHalfCluster();
//Cyber::CaloHalfCluster* clus_tail = new Cyber::CaloHalfCluster();
std::shared_ptr<Cyber::CaloHalfCluster> clus_head = std::make_shared<Cyber::CaloHalfCluster>();
std::shared_ptr<Cyber::CaloHalfCluster> clus_tail = std::make_shared<Cyber::CaloHalfCluster>();
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
for(int jh=0; jh<=ih; jh++)
clus_head->addUnit( m_longiClusCol[ic].get()->getCluster()[jh]);
for(int jh=ih+1; jh<m_nhit; jh++)
clus_tail->addUnit( m_longiClusCol[ic].get()->getCluster()[jh]);
if( clus_head->isContinueN(settings.map_intPars["th_continueN"]) ) {
clus_head->setType(100);
clus_head->setHoughPars(m_longiClusCol[ic].get()->getHoughAlpha(), m_longiClusCol[ic].get()->getHoughRho());
clus_head->getLinkedMCPfromUnit();
m_longiClusCol.push_back(clus_head);
}
//else{
// delete clus_head;
//}
if( clus_tail->isContinueN(settings.map_intPars["th_continueN"]) ) {
clus_tail->setHoughPars(m_longiClusCol[ic].get()->getHoughAlpha(), m_longiClusCol[ic].get()->getHoughRho());
clus_tail->setType(100);
clus_tail->getLinkedMCPfromUnit();
m_longiClusCol.push_back(clus_tail);
}
//else{
// delete clus_tail;
//}
//delete m_longiClusCol[ic]; m_longiClusCol[ic] = NULL;
m_longiClusCol.erase(m_longiClusCol.begin()+ic);
ic--;
break;
}
}
}
// Remove repeated tracks
for(int ic=0; ic<m_longiClusCol.size(); ic++){
for(int jc=0; jc<m_longiClusCol.size(); jc++){
if(ic>=m_longiClusCol.size()) ic--;
if(ic==jc) continue;
if( m_longiClusCol[ic].get()->isSubset(m_longiClusCol[jc].get()) ){ //jc is the subset of ic. remove jc.
//delete m_longiClusCol[jc]; m_longiClusCol[jc] = NULL;
m_longiClusCol.erase(m_longiClusCol.begin()+jc );
jc--;
if(ic>jc+1) ic--;
}
}}
// Cut energy
for(int ic=0; ic<m_longiClusCol.size(); ic++){
if(m_longiClusCol[ic].get()->getEnergy()<settings.map_floatPars["th_AxisE"]){
//delete m_longiClusCol[ic]; m_longiClusCol[ic]=NULL;
m_longiClusCol.erase(m_longiClusCol.begin()+ic );
ic--;
}
}
// Overlap with other clusters:
if(m_longiClusCol.size()>=2){
for(int ic=0; ic<m_longiClusCol.size()-1; ic++){
for(int jc=ic+1; jc<m_longiClusCol.size(); jc++){
if(ic>=m_longiClusCol.size()) ic--;
double delta_alpha = TMath::Abs(m_longiClusCol[ic].get()->getHoughAlpha() - m_longiClusCol[jc].get()->getHoughAlpha());
if( (delta_alpha > settings.map_floatPars["th_dAlpha1"])
&& (delta_alpha < 2*TMath::Pi()-settings.map_floatPars["th_dAlpha1"]) ) continue;
double m_ratio1 = m_longiClusCol[ic].get()->OverlapRatioE(m_longiClusCol[jc].get());
double m_ratio2 = m_longiClusCol[jc].get()->OverlapRatioE(m_longiClusCol[ic].get());
if(m_ratio1>settings.map_floatPars["th_overlapE"] && m_longiClusCol[ic].get()->getEnergy()<m_longiClusCol[jc].get()->getEnergy()){
//delete m_longiClusCol[ic]; m_longiClusCol[ic] = NULL;
m_longiClusCol.erase( m_longiClusCol.begin()+ic );
ic--;
break;
}
if(m_ratio2>settings.map_floatPars["th_overlapE"] && m_longiClusCol[jc].get()->getEnergy()<m_longiClusCol[ic].get()->getEnergy()){
//delete m_longiClusCol[jc]; m_longiClusCol[jc] = NULL;
m_longiClusCol.erase( m_longiClusCol.begin()+jc );
jc--;
}
}}
}
// If two cluster are close to each other, and E_small/E_large < threshold, delete the small ones
if(m_longiClusCol.size()>=2){
for(int ic=0; ic<m_longiClusCol.size()-1; ic++){
for(int jc=ic+1; jc<m_longiClusCol.size(); jc++){
if(ic>=m_longiClusCol.size()) ic--;
double delta_alpha = TMath::Abs(m_longiClusCol[ic].get()->getHoughAlpha() - m_longiClusCol[jc].get()->getHoughAlpha());
if( delta_alpha > settings.map_floatPars["th_dAlpha2"] ) continue;
double E_ratio1 = m_longiClusCol[ic].get()->getEnergy() / m_longiClusCol[jc].get()->getEnergy();
double E_ratio2 = m_longiClusCol[jc].get()->getEnergy() / m_longiClusCol[ic].get()->getEnergy();
if( E_ratio1 < settings.map_floatPars["th_ERatio"] ){
//delete m_longiClusCol[ic]; m_longiClusCol[ic] = NULL;
m_longiClusCol.erase( m_longiClusCol.begin()+ic );
ic--;
break;
}
else if( E_ratio2 < settings.map_floatPars["th_ERatio"] ){
//delete m_longiClusCol[jc]; m_longiClusCol[jc] = NULL;
m_longiClusCol.erase( m_longiClusCol.begin()+jc );
jc--;
}
}}
}
return StatusCode::SUCCESS;
} // CleanClusters() end
#endif