Newer
Older
#ifndef _PFORECLUSTERING_ALG_C
#define _PFORECLUSTERING_ALG_C
#include "Algorithm/PFOReclusteringAlg.h"
StatusCode PFOReclusteringAlg::ReadSettings(Settings& m_settings){
settings = m_settings;
//Initialize parameters
if(settings.map_stringPars.find("ReadinPFOName")==settings.map_stringPars.end()) settings.map_stringPars["ReadinPFOName"] = "outputPFO";
if(settings.map_floatPars.find("ECALCalib")==settings.map_floatPars.end()) settings.map_floatPars["ECALCalib"] = 1.02;
if(settings.map_floatPars.find("HCALCalib")==settings.map_floatPars.end()) settings.map_floatPars["HCALCalib"] = 65.;
if(settings.map_floatPars.find("EnergyRes")==settings.map_floatPars.end()) settings.map_floatPars["EnergyRes"] = 0.4;
if(settings.map_floatPars.find("SplitSigma")==settings.map_floatPars.end()) settings.map_floatPars["SplitSigma"] = 0.;
if(settings.map_floatPars.find("NeutralMergeSigma")==settings.map_floatPars.end()) settings.map_floatPars["NeutralMergeSigma"] = 0.;
if(settings.map_floatPars.find("VirtualMergeSigma")==settings.map_floatPars.end()) settings.map_floatPars["VirtualMergeSigma"] = 0.6;
if(settings.map_floatPars.find("MinAngleForNeuMerge")==settings.map_floatPars.end()) settings.map_floatPars["MinAngleForNeuMerge"] = 0.18;
if(settings.map_floatPars.find("MinAngleForVirMerge")==settings.map_floatPars.end()) settings.map_floatPars["MinAngleForVirMerge"] = 0.12;
return StatusCode::SUCCESS;
};
StatusCode PFOReclusteringAlg::Initialize( CyberDataCol& m_datacol ){
p_PFObjects = nullptr;
p_PFObjects = &(m_datacol.map_PFObjects[settings.map_stringPars["ReadinPFOName"]]);
return StatusCode::SUCCESS;
};
StatusCode PFOReclusteringAlg::RunAlgorithm( CyberDataCol& m_datacol ){
std::vector< std::shared_ptr<Cyber::PFObject> > m_chargedPFOs;
std::vector< std::shared_ptr<Cyber::PFObject> > m_neutralPFOs;
for(int ipfo=0; ipfo<p_PFObjects->size(); ipfo++){
if(p_PFObjects->at(ipfo)->getTracks().size()==0) m_neutralPFOs.push_back( p_PFObjects->at(ipfo) );
else m_chargedPFOs.push_back( p_PFObjects->at(ipfo) );
}
std::sort(m_chargedPFOs.begin(), m_chargedPFOs.end(), compTrkP);
double totE_Ecal = 0;
double totE_Hcal = 0;
cout<<"Readin PFO: "<<p_PFObjects->size()<<", charged "<<m_chargedPFOs.size()<<", neutral "<<m_neutralPFOs.size()<<endl;
for(int i=0; i<m_neutralPFOs.size(); i++){
cout<<" PFO #"<<i<<": track size "<<m_neutralPFOs[i]->getTracks().size()<<", leading P "<<m_neutralPFOs[i]->getTrackMomentum();
cout<<", ECAL cluster size "<<m_neutralPFOs[i]->getECALClusters().size()<<", totE "<<m_neutralPFOs[i]->getECALClusterEnergy();
cout<<", HCAL cluster size "<<m_neutralPFOs[i]->getHCALClusters().size()<<", totE "<<m_neutralPFOs[i]->getHCALClusterEnergy()<<endl;
totE_Ecal += m_neutralPFOs[i]->getECALClusterEnergy();
totE_Hcal += m_neutralPFOs[i]->getHCALClusterEnergy();
}
cout<<"-----Neutral cluster Ecal total energy: "<<totE_Ecal<<", Hcal total energy: "<<totE_Hcal<<endl;
totE_Ecal = 0;
totE_Hcal = 0;
for(int i=0; i<m_chargedPFOs.size(); i++){
cout<<" PFO #"<<i<<": track size "<<m_chargedPFOs[i]->getTracks().size()<<", leading P "<<m_chargedPFOs[i]->getTrackMomentum();
cout<<", ECAL cluster size "<<m_chargedPFOs[i]->getECALClusters().size()<<", totE "<<m_chargedPFOs[i]->getECALClusterEnergy();
cout<<", HCAL cluster size "<<m_chargedPFOs[i]->getHCALClusters().size()<<", totE "<<m_chargedPFOs[i]->getHCALClusterEnergy()<<endl;
totE_Ecal += m_chargedPFOs[i]->getECALClusterEnergy();
totE_Hcal += m_chargedPFOs[i]->getHCALClusterEnergy();
}
cout<<"-----Charged cluster Ecal total energy: "<<totE_Ecal<<", Hcal total energy: "<<totE_Hcal<<endl;
//If P_trk < E_cluster, create a virtual neutral PFO.
ReCluster_SplitFromChg(m_chargedPFOs, m_neutralPFOs);
totE_Ecal = 0;
totE_Hcal = 0;
cout<<"After split from Ch: charged "<<m_chargedPFOs.size()<<", neutral "<<m_neutralPFOs.size()<<", total "<<p_PFObjects->size()<<endl;
for(int i=0; i<m_neutralPFOs.size(); i++){
cout<<" PFO #"<<i<<": track size "<<m_neutralPFOs[i]->getTracks().size()<<", leading P "<<m_neutralPFOs[i]->getTrackMomentum();
cout<<", ECAL cluster size "<<m_neutralPFOs[i]->getECALClusters().size()<<", totE "<<m_neutralPFOs[i]->getECALClusterEnergy();
cout<<", HCAL cluster size "<<m_neutralPFOs[i]->getHCALClusters().size()<<", totE "<<m_neutralPFOs[i]->getHCALClusterEnergy()<<endl;
totE_Ecal += m_neutralPFOs[i]->getECALClusterEnergy();
totE_Hcal += m_neutralPFOs[i]->getHCALClusterEnergy();
}
cout<<"-----Neutral cluster Ecal total energy: "<<totE_Ecal<<", Hcal total energy: "<<totE_Hcal<<endl;
totE_Ecal = 0;
totE_Hcal = 0;
for(int i=0; i<m_chargedPFOs.size(); i++){
cout<<" PFO #"<<i<<": track size "<<m_chargedPFOs[i]->getTracks().size()<<", leading P "<<m_chargedPFOs[i]->getTrackMomentum();
cout<<", ECAL cluster size "<<m_chargedPFOs[i]->getECALClusters().size()<<", totE "<<m_chargedPFOs[i]->getECALClusterEnergy();
cout<<", HCAL cluster size "<<m_chargedPFOs[i]->getHCALClusters().size()<<", totE "<<m_chargedPFOs[i]->getHCALClusterEnergy()<<endl;
totE_Ecal += m_chargedPFOs[i]->getECALClusterEnergy();
totE_Hcal += m_chargedPFOs[i]->getHCALClusterEnergy();
}
cout<<"-----Charged cluster Ecal total energy: "<<totE_Ecal<<", Hcal total energy: "<<totE_Hcal<<endl;
//If P_trk > E_cluster, merge nearby neutral PFO into the charged.
ReCluster_MergeToChg(m_chargedPFOs, m_neutralPFOs);
m_datacol.map_CaloHit["bkHit"].insert( m_datacol.map_CaloHit["bkHit"].end(), m_bkCol.map_CaloHit["bkHit"].begin(), m_bkCol.map_CaloHit["bkHit"].end() );
m_datacol.map_CaloCluster["bk3DCluster"].insert( m_datacol.map_CaloCluster["bk3DCluster"].end(), m_bkCol.map_CaloCluster["bk3DCluster"].begin(), m_bkCol.map_CaloCluster["bk3DCluster"].end() );
m_datacol.map_PFObjects["bkPFO"].insert( m_datacol.map_PFObjects["bkPFO"].end(), m_bkCol.map_PFObjects["bkPFO"].begin(), m_bkCol.map_PFObjects["bkPFO"].end() );
totE_Ecal = 0;
totE_Hcal = 0;
cout<<"After merge all virtual to Ch: charged "<<m_chargedPFOs.size()<<", neutral "<<m_neutralPFOs.size()<<", total "<<p_PFObjects->size()<<endl;
for(int i=0; i<m_neutralPFOs.size(); i++){
cout<<" PFO #"<<i<<": track size "<<m_neutralPFOs[i]->getTracks().size()<<", leading P "<<m_neutralPFOs[i]->getTrackMomentum();
cout<<", ECAL cluster size "<<m_neutralPFOs[i]->getECALClusters().size()<<", totE "<<m_neutralPFOs[i]->getECALClusterEnergy();
cout<<", HCAL cluster size "<<m_neutralPFOs[i]->getHCALClusters().size()<<", totE "<<m_neutralPFOs[i]->getHCALClusterEnergy()<<endl;
totE_Ecal += m_neutralPFOs[i]->getECALClusterEnergy();
totE_Hcal += m_neutralPFOs[i]->getHCALClusterEnergy();
}
cout<<"-----Neutral cluster Ecal total energy: "<<totE_Ecal<<", Hcal total energy: "<<totE_Hcal<<endl;
totE_Ecal = 0;
totE_Hcal = 0;
for(int i=0; i<m_chargedPFOs.size(); i++){
cout<<" PFO #"<<i<<": track size "<<m_chargedPFOs[i]->getTracks().size()<<", leading P "<<m_chargedPFOs[i]->getTrackMomentum();
cout<<", ECAL cluster size "<<m_chargedPFOs[i]->getECALClusters().size()<<", totE "<<m_chargedPFOs[i]->getECALClusterEnergy();
cout<<", HCAL cluster size "<<m_chargedPFOs[i]->getHCALClusters().size()<<", totE "<<m_chargedPFOs[i]->getHCALClusterEnergy()<<endl;
totE_Ecal += m_chargedPFOs[i]->getECALClusterEnergy();
totE_Hcal += m_chargedPFOs[i]->getHCALClusterEnergy();
}
cout<<"-----Charged cluster Ecal total energy: "<<totE_Ecal<<", Hcal total energy: "<<totE_Hcal<<endl;
m_chargedPFOs.clear();
m_neutralPFOs.clear();
return StatusCode::SUCCESS;
};
StatusCode PFOReclusteringAlg::ClearAlgorithm(){
p_PFObjects = nullptr;
m_bkCol.Clear();
return StatusCode::SUCCESS;
};
StatusCode PFOReclusteringAlg::ReCluster_MergeToChg(std::vector< std::shared_ptr<Cyber::PFObject> >& m_chargedPFOs,
std::vector< std::shared_ptr<Cyber::PFObject> >& m_neutralPFOs ){
//Merge real neutral PFOs
for(int ic=0; ic<m_chargedPFOs.size(); ic++){
if(m_chargedPFOs[ic]->getECALClusters().size()==0 && m_chargedPFOs[ic]->getHCALClusters().size()==0) continue;
double track_energy = m_chargedPFOs[ic]->getTrackMomentum();
double ECAL_energy = settings.map_floatPars["ECALCalib"]*m_chargedPFOs[ic]->getECALClusterEnergy();
double HCAL_energy = settings.map_floatPars["HCALCalib"]*m_chargedPFOs[ic]->getHCALClusterEnergy();
if(track_energy<0 || ECAL_energy<0 || HCAL_energy<0){
std::cout<<"ERROR: Charged PFO info break. Ptrk "<<track_energy<<", E_ecal "<<ECAL_energy<<", E_hcal "<<HCAL_energy<<endl;
continue;
}
double delta_energy = ECAL_energy + HCAL_energy - track_energy;
double sigmaE = settings.map_floatPars["EnergyRes"] * sqrt(ECAL_energy + HCAL_energy);
//cout<<" ReCluster_MergeToChg: In ChPFO #"<<ic;
//cout<<": ECAL cluster size "<<m_chargedPFOs[ic]->getECALClusters().size()<<", HCAL cluster size "<<m_chargedPFOs[ic]->getHCALClusters().size();
//cout<<", Ptrk = "<<track_energy<<", Eecal = "<<ECAL_energy<<", Ehcal = "<<HCAL_energy<<", deltaE = "<<delta_energy<<", sigmaE = "<<sigmaE<<endl;
if(delta_energy >= settings.map_floatPars["NeutralMergeSigma"]*sigmaE) continue;
//cout<<" Do charged PFO merge. "<<endl;
// All HCAL clusters in the neutral PFO
std::vector<const Cyber::Calo3DCluster*> all_neutral_HCAL_clus;
for(int ip=0; ip<m_neutralPFOs.size(); ip++){
std::vector<const Cyber::Calo3DCluster*> tmp_HCAL_clus = m_neutralPFOs[ip]->getHCALClusters();
all_neutral_HCAL_clus.insert(all_neutral_HCAL_clus.end(), tmp_HCAL_clus.begin(), tmp_HCAL_clus.end());
}
//cout<<" Neutral HCAL cluster size "<<all_neutral_HCAL_clus.size()<<endl;
TVector3 trackclus_pos(0, 0, 0);
if(m_chargedPFOs[ic]->getECALClusters().size()>0){
trackclus_pos = m_chargedPFOs[ic]->getECALClusters()[0]->getShowerCenter();
}
else{
for(int jc=0; jc<m_chargedPFOs[ic]->getHCALClusters().size(); jc++)
trackclus_pos += m_chargedPFOs[ic]->getHCALClusters()[jc]->getHitCenter() * settings.map_floatPars["HCALCalib"]*m_chargedPFOs[ic]->getHCALClusters()[jc]->getHitsE();
trackclus_pos = trackclus_pos*(1./HCAL_energy);
}
//printf(" charged cluster trk pos: [%.3f, %.3f, %.3f] \n", trackclus_pos.x(), trackclus_pos.y(), trackclus_pos.z());
int loop_count = 0;
std::vector<const Cyber::Calo3DCluster*> skip_clus;
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
while(delta_energy < 0){
loop_count++;
if(loop_count>all_neutral_HCAL_clus.size()+10){
break;
}
double min_angle = 999.0;
int clus_index = -1;
for(int in=0; in<all_neutral_HCAL_clus.size(); in++){
if(find(skip_clus.begin(), skip_clus.end(), all_neutral_HCAL_clus[in]) != skip_clus.end()) continue;
TVector3 neutral_clus_pos = all_neutral_HCAL_clus[in]->getHitCenter();
double pfo_angle = trackclus_pos.Angle(neutral_clus_pos);
if (pfo_angle<settings.map_floatPars["MinAngleForNeuMerge"] && pfo_angle<min_angle){
min_angle=pfo_angle;
clus_index = in;
}
}
//cout<<" In Loop "<<loop_count<<": current deltaE = "<<delta_energy<<", closest virtual cluster index "<<clus_index<<endl;
if(clus_index<0) break; // No neutral Hcal cluster to be merged
double tmp_delta_E = delta_energy + settings.map_floatPars["HCALCalib"]*all_neutral_HCAL_clus[clus_index]->getHitsE();
if (TMath::Abs(tmp_delta_E) >= TMath::Abs(delta_energy)){
skip_clus.push_back(all_neutral_HCAL_clus[clus_index]);
continue; // No need to merge this HCAL cluster
}
// Update delta_energy
delta_energy = tmp_delta_E;
// Add this HCAL cluster to charged PFO
m_chargedPFOs[ic]->addHCALCluster(all_neutral_HCAL_clus[clus_index]);
// Remove this HCAL cluster from neutral PFO
bool is_found = false;
for(int in=0; in<m_neutralPFOs.size(); in++){
std::vector<const Cyber::Calo3DCluster*> neutral_cluster = m_neutralPFOs[in]->getHCALClusters();
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
int tmp_index=-1;
for(int ii=0; ii<neutral_cluster.size(); ii++){
if (all_neutral_HCAL_clus[clus_index]==neutral_cluster[ii]){
tmp_index = ii;
break;
}
}
if (tmp_index==-1) continue;
//cout<<" Remove a neutral cluster: En "<<settings.map_floatPars["HCALCalib"]*neutral_cluster[tmp_index]->getHitsE()<<endl;
neutral_cluster.erase(neutral_cluster.begin()+tmp_index);
m_neutralPFOs[in]->setHCALCluster(neutral_cluster);
if(m_neutralPFOs[in]->getTracks().size() + m_neutralPFOs[in]->getECALClusters().size() + m_neutralPFOs[in]->getHCALClusters().size()==0){
//cout<<" Remove a neutral PFO: ECAL En "<<m_neutralPFOs[in]->getECALClusterEnergy()<<", HCAL En "<<m_neutralPFOs[in]->getHCALClusterEnergy()<<endl;
auto iter = find(p_PFObjects->begin(), p_PFObjects->end(), m_neutralPFOs[in]);
if(iter==p_PFObjects->end()){
std::cout<<"ERROR: can not find this neutral PFO in p_PFObjects. "<<std::endl;
}
else{
m_neutralPFOs.erase(m_neutralPFOs.begin()+in);
p_PFObjects->erase(iter);
}
}
is_found = true;
break;
}
if(!is_found){
cout << "Error! Can not find the HCAL cluster in neutral PFO" << endl;
}
// Remove this HCAL cluster from all_neutral_HCAL_clus
all_neutral_HCAL_clus.erase(all_neutral_HCAL_clus.begin()+clus_index);
}
}
double totE_Ecal = 0;
double totE_Hcal = 0;
cout<<"After merge real neu to Ch: charged "<<m_chargedPFOs.size()<<", neutral "<<m_neutralPFOs.size()<<", total "<<p_PFObjects->size()<<endl;
for(int i=0; i<m_neutralPFOs.size(); i++){
cout<<" PFO #"<<i<<": track size "<<m_neutralPFOs[i]->getTracks().size()<<", leading P "<<m_neutralPFOs[i]->getTrackMomentum();
cout<<", ECAL cluster size "<<m_neutralPFOs[i]->getECALClusters().size()<<", totE "<<m_neutralPFOs[i]->getECALClusterEnergy();
cout<<", HCAL cluster size "<<m_neutralPFOs[i]->getHCALClusters().size()<<", totE "<<m_neutralPFOs[i]->getHCALClusterEnergy()<<endl;
totE_Ecal += m_neutralPFOs[i]->getECALClusterEnergy();
totE_Hcal += m_neutralPFOs[i]->getHCALClusterEnergy();
}
cout<<"-----Neutral cluster Ecal total energy: "<<totE_Ecal<<", Hcal total energy: "<<totE_Hcal<<endl;
totE_Ecal = 0;
totE_Hcal = 0;
for(int i=0; i<m_chargedPFOs.size(); i++){
cout<<" PFO #"<<i<<": track size "<<m_chargedPFOs[i]->getTracks().size()<<", leading P "<<m_chargedPFOs[i]->getTrackMomentum();
cout<<", ECAL cluster size "<<m_chargedPFOs[i]->getECALClusters().size()<<", totE "<<m_chargedPFOs[i]->getECALClusterEnergy();
cout<<", HCAL cluster size "<<m_chargedPFOs[i]->getHCALClusters().size()<<", totE "<<m_chargedPFOs[i]->getHCALClusterEnergy()<<endl;
totE_Ecal += m_chargedPFOs[i]->getECALClusterEnergy();
totE_Hcal += m_chargedPFOs[i]->getHCALClusterEnergy();
}
cout<<"-----Charged cluster Ecal total energy: "<<totE_Ecal<<", Hcal total energy: "<<totE_Hcal<<endl;
//Merge virtual neutral PFOs created from splitting.
for(int ic=0; ic<m_chargedPFOs.size(); ic++){
if(m_chargedPFOs[ic]->getTracks().size()==0) continue;
if( m_chargedPFOs[ic]->getECALClusters().size()==0 &&
m_chargedPFOs[ic]->getHCALClusters().size()==0 &&
m_chargedPFOs[ic]->getTracks()[0]->getTrackStates("Hcal").size()==0) continue;
double track_energy = m_chargedPFOs[ic]->getTrackMomentum();
double ECAL_energy = settings.map_floatPars["ECALCalib"]*m_chargedPFOs[ic]->getECALClusterEnergy();
double HCAL_energy = settings.map_floatPars["HCALCalib"]*m_chargedPFOs[ic]->getHCALClusterEnergy();
if(track_energy<0 || ECAL_energy<0 || HCAL_energy<0){
std::cout<<"ERROR: Charged PFO info break. Ptrk "<<track_energy<<", E_ecal "<<ECAL_energy<<", E_hcal "<<HCAL_energy<<endl;
continue;
}
double sigmaE = settings.map_floatPars["EnergyRes"] * sqrt(track_energy);
double delta_energy = ECAL_energy + HCAL_energy - track_energy;
if(delta_energy > settings.map_floatPars["VirtualMergeSigma"]*sigmaE) continue;
// Virtual HCAL clusters in the neutral PFO
std::vector<const Cyber::Calo3DCluster*> all_neutral_HCAL_clus; all_neutral_HCAL_clus.clear();
for(int ip=0; ip<m_neutralPFOs.size(); ip++){
std::vector<const Cyber::Calo3DCluster*> tmp_HCAL_clus = m_neutralPFOs[ip]->getHCALClusters();
if(tmp_HCAL_clus.size()!=1) continue;
if(tmp_HCAL_clus[0]->getType()!=-1) continue;
all_neutral_HCAL_clus.push_back(tmp_HCAL_clus[0]);
}
//cout<<" Virtual HCAL cluster size "<<all_neutral_HCAL_clus.size()<<", print them: "<<endl;
//for(int aa=0; aa<all_neutral_HCAL_clus.size(); aa++){
// printf(" #%d: pos (%.3f, %.3f, %.3f), En %.3f, Nhit %d, type %d \n", aa, all_neutral_HCAL_clus[aa]->getHitCenter().x(), all_neutral_HCAL_clus[aa]->getHitCenter().y(), all_neutral_HCAL_clus[aa]->getHitCenter().z(), all_neutral_HCAL_clus[aa]->getHitsE()*settings.map_floatPars["HCALCalib"], all_neutral_HCAL_clus[aa]->getCaloHits().size(), all_neutral_HCAL_clus[aa]->getType() );
//}
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
TVector3 trackclus_pos(0, 0, 0);
if(m_chargedPFOs[ic]->getTracks()[0]->getTrackStates("Hcal").size()>0){
std::vector<TrackState> m_extTrkStats = m_chargedPFOs[ic]->getTracks()[0]->getTrackStates("Hcal");
int min_hit_index = -1;
double min_distance = 999999;
for(int i=0; i<m_extTrkStats.size(); i++){
double hit_distance = m_extTrkStats[i].referencePoint.Perp();
if(hit_distance<min_distance){
min_distance = hit_distance;
min_hit_index = i;
}
}
if(min_hit_index>=0) trackclus_pos = m_extTrkStats[min_hit_index].referencePoint;
}
else if(m_chargedPFOs[ic]->getECALClusters().size()>0){
trackclus_pos = m_chargedPFOs[ic]->getECALClusters()[0]->getShowerCenter();
}
else{
for(int jc=0; jc<m_chargedPFOs[ic]->getHCALClusters().size(); jc++)
trackclus_pos += m_chargedPFOs[ic]->getHCALClusters()[jc]->getHitCenter() * settings.map_floatPars["HCALCalib"]*m_chargedPFOs[ic]->getHCALClusters()[jc]->getHitsE();
trackclus_pos = trackclus_pos*(1./HCAL_energy);
}
// printf(" charged cluster trk pos: [%.3f, %.3f, %.3f] \n", trackclus_pos.x(), trackclus_pos.y(), trackclus_pos.z());
int loop_count = 0;
std::vector<const Cyber::Calo3DCluster*> skip_clus;
while(delta_energy < sigmaE*settings.map_floatPars["VirtualMergeSigma"]-(1e-6)){
loop_count++;
if(loop_count>all_neutral_HCAL_clus.size()+10){
break;
}
double min_angle = 999.0;
int clus_index = -1;
for(int in=0; in<all_neutral_HCAL_clus.size(); in++){
if(find(skip_clus.begin(), skip_clus.end(), all_neutral_HCAL_clus[in]) != skip_clus.end()) continue;
TVector3 neutral_clus_pos = all_neutral_HCAL_clus[in]->getHitCenter();
double pfo_angle = trackclus_pos.Angle(neutral_clus_pos);
if (pfo_angle<settings.map_floatPars["MinAngleForVirMerge"] && pfo_angle<min_angle){
min_angle=pfo_angle;
clus_index = in;
}
}
// cout<<" In Loop "<<loop_count<<": current deltaE = "<<delta_energy<<", closest virtual cluster index "<<clus_index<<endl;
if(clus_index<0) break; // No neutral Hcal cluster to be merged
double tmp_delta_E = delta_energy + settings.map_floatPars["HCALCalib"]*all_neutral_HCAL_clus[clus_index]->getHitsE();
// cout<<" If include this cluster: new deltaE "<<tmp_delta_E<<", merge = "<<(tmp_delta_E > sigmaE * settings.map_floatPars["VirtualMergeSigma"])<<endl;
if(tmp_delta_E > sigmaE * settings.map_floatPars["VirtualMergeSigma"]){
double absorbed_energy = sigmaE*settings.map_floatPars["VirtualMergeSigma"] - delta_energy;
delta_energy = delta_energy + absorbed_energy;
//Create a new virtual neutral cluster with energy = absorbed_energy.
std::shared_ptr<Cyber::CaloHit> m_hit = all_neutral_HCAL_clus[clus_index]->getCaloHits()[0]->Clone();
m_hit->setEnergy(absorbed_energy/settings.map_floatPars["HCALCalib"]);
std::shared_ptr<Cyber::Calo3DCluster> m_clus = std::make_shared<Cyber::Calo3DCluster>();
m_clus->addHit(m_hit.get());
m_clus->setType(-1);
m_bkCol.map_CaloHit["bkHit"].push_back( m_hit );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_clus);
m_chargedPFOs[ic]->addHCALCluster( m_clus.get() );
//Re-set neutral virtual cluster energy
bool is_found = false;
for(int ip=0; ip<m_neutralPFOs.size(); ip++){
auto tmp_HCAL_clus = m_neutralPFOs[ip]->getHCALClusters();
if(tmp_HCAL_clus.size()!=1) continue;
if(tmp_HCAL_clus[0]->getType()!=-1) continue;
if(tmp_HCAL_clus[0]==all_neutral_HCAL_clus[clus_index]){
std::shared_ptr<Cyber::CaloHit> m_newhit = all_neutral_HCAL_clus[clus_index]->getCaloHits()[0]->Clone();
m_newhit->setEnergy(all_neutral_HCAL_clus[clus_index]->getHitsE() - absorbed_energy/settings.map_floatPars["HCALCalib"] );
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = std::make_shared<Cyber::Calo3DCluster>();
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
m_newclus->addHit(m_newhit.get());
m_newclus->setType(-1);
m_bkCol.map_CaloHit["bkHit"].push_back( m_newhit );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
std::vector<const Calo3DCluster*> tmp_clusters; tmp_clusters.clear();
tmp_clusters.push_back(m_clus.get());
m_neutralPFOs[ip]->setHCALCluster( tmp_clusters );
is_found = true;
break;
}
}
if(!is_found){
cout << "Error! Can not find the HCAL cluster in neutral PFO to delete part of the energy" << endl;
}
//Reset the energy
all_neutral_HCAL_clus.erase(all_neutral_HCAL_clus.begin()+clus_index);
all_neutral_HCAL_clus.push_back(m_clus.get());
skip_clus.push_back(m_clus.get());
}
else{
if (TMath::Abs(tmp_delta_E) >= TMath::Abs(delta_energy)){
skip_clus.push_back(all_neutral_HCAL_clus[clus_index]);
continue; // No need to merge this HCAL cluster
}
// Update delta_energy
delta_energy = tmp_delta_E;
// Add this HCAL cluster to charged PFO
m_chargedPFOs[ic]->addHCALCluster(all_neutral_HCAL_clus[clus_index]);
// Remove this HCAL cluster from neutral PFO
bool is_found = false;
for(int in=0; in<m_neutralPFOs.size(); in++){
std::vector<const Cyber::Calo3DCluster*> neutral_cluster = m_neutralPFOs[in]->getHCALClusters();
int tmp_index=-1;
for(int ii=0; ii<neutral_cluster.size(); ii++){
if (all_neutral_HCAL_clus[clus_index]==neutral_cluster[ii]){
tmp_index = ii;
break;
}
}
if (tmp_index==-1) continue;
// cout<<" Remove a neutral cluster: En "<<settings.map_floatPars["HCALCalib"]*neutral_cluster[tmp_index]->getHitsE()<<endl;
neutral_cluster.erase(neutral_cluster.begin()+tmp_index);
m_neutralPFOs[in]->setHCALCluster(neutral_cluster);
if(m_neutralPFOs[in]->getTracks().size() + m_neutralPFOs[in]->getECALClusters().size() + m_neutralPFOs[in]->getHCALClusters().size()==0){
// cout<<" Remove a neutral PFO: ECAL En "<<m_neutralPFOs[in]->getECALClusterEnergy()<<", HCAL En "<<m_neutralPFOs[in]->getHCALClusterEnergy()<<endl;
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
auto iter = find(p_PFObjects->begin(), p_PFObjects->end(), m_neutralPFOs[in]);
if(iter==p_PFObjects->end()){
std::cout<<"ERROR: can not find this neutral PFO in p_PFObjects. "<<std::endl;
}
else{
m_neutralPFOs.erase(m_neutralPFOs.begin()+in);
p_PFObjects->erase(iter);
}
}
is_found = true;
break;
}
if(!is_found){
cout << "Error! Can not find the HCAL cluster in neutral PFO" << endl;
}
// Remove this HCAL cluster from all_neutral_HCAL_clus
all_neutral_HCAL_clus.erase(all_neutral_HCAL_clus.begin()+clus_index);
}
}
}
return StatusCode::SUCCESS;
};
StatusCode PFOReclusteringAlg::ReCluster_SplitFromChg( std::vector< std::shared_ptr<Cyber::PFObject> >& m_chargedPFOs,
std::vector< std::shared_ptr<Cyber::PFObject> >& m_neutralPFOs ){
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
for(int ipfo=0; ipfo<m_chargedPFOs.size(); ipfo++){
if(m_chargedPFOs[ipfo]->getECALClusters().size()==0 && m_chargedPFOs[ipfo]->getHCALClusters().size()==0) continue;
double track_energy = m_chargedPFOs[ipfo]->getTrackMomentum();
double ECAL_energy = settings.map_floatPars["ECALCalib"]*m_chargedPFOs[ipfo]->getECALClusterEnergy();
double HCAL_energy = settings.map_floatPars["HCALCalib"]*m_chargedPFOs[ipfo]->getHCALClusterEnergy();
if(track_energy<0 || ECAL_energy<0 || HCAL_energy<0){
std::cout<<"ERROR: Charged PFO info break. Ptrk "<<track_energy<<", E_ecal "<<ECAL_energy<<", E_hcal "<<HCAL_energy<<endl;
continue;
}
double delta_energy = ECAL_energy + HCAL_energy - track_energy;
double sigmaE = settings.map_floatPars["EnergyRes"] * sqrt(ECAL_energy + HCAL_energy);
//cout<<" ReCluster_MergeToChg: In ChPFO #"<<ipfo<<": Ptrk = "<<track_energy<<", Eecal = "<<ECAL_energy<<", Ehcal = "<<HCAL_energy<<", deltaE = "<<delta_energy<<", sigmaE = "<<sigmaE<<endl;
if(delta_energy <= settings.map_floatPars["SplitSigma"]*sigmaE) continue;
//cout<<" Do charged PFO splitting. "<<endl;
//Create a new hit and cluster
TVector3 tmp_pos(0,0,0);
for(int ic=0; ic<m_chargedPFOs[ipfo]->getECALClusters().size(); ic++)
tmp_pos += settings.map_floatPars["ECALCalib"] * m_chargedPFOs[ipfo]->getECALClusters()[ic]->getLongiE() * m_chargedPFOs[ipfo]->getECALClusters()[ic]->getShowerCenter();
for(int ic=0; ic<m_chargedPFOs[ipfo]->getHCALClusters().size(); ic++)
tmp_pos += settings.map_floatPars["HCALCalib"] * m_chargedPFOs[ipfo]->getHCALClusters()[ic]->getHitsE() * m_chargedPFOs[ipfo]->getHCALClusters()[ic]->getHitCenter();
tmp_pos = tmp_pos*(1./(ECAL_energy+HCAL_energy));
std::shared_ptr<Cyber::CaloHit> m_hit = std::make_shared<Cyber::CaloHit>();
m_hit->setPosition( tmp_pos );
m_hit->setEnergy( delta_energy/settings.map_floatPars["HCALCalib"] );
std::shared_ptr<Cyber::Calo3DCluster> m_clus = std::make_shared<Cyber::Calo3DCluster>();
m_clus->addHit(m_hit.get());
m_clus->setType(-1);
std::shared_ptr<Cyber::PFObject> m_pfo = std::make_shared<Cyber::PFObject>();
m_pfo->addHCALCluster( m_clus.get() );
//cout<<"Create a new Neutral PFO: energy "<<m_pfo->getHCALClusterEnergy()<<endl;
m_neutralPFOs.push_back( m_pfo );
p_PFObjects->push_back( m_pfo );
//For this charged PFO: reset HCAL energy. (negative HCAL energy is NOT allowed)
if(HCAL_energy>0 && HCAL_energy-delta_energy>0){
double m_HcalEnScale = (HCAL_energy-delta_energy)/HCAL_energy;
//cout<<"[FY debug] In PFO "<<ipfo<<": track P "<<m_chargedPFOs[ipfo]->getTrackMomentum()<<", HCAL cluster size "<<m_chargedPFOs[ipfo]->getHCALClusters().size()<<", first HCAL has Nhit "<<m_chargedPFOs[ipfo]->getHCALClusters()[0]->getCaloHits().size()<<endl;
//cout<<"[FY debug] Hcal energy scale = "<<m_HcalEnScale<<endl;
//Create new HCAL cluster
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = std::make_shared<Cyber::Calo3DCluster>();
for(int ic=0; ic<m_chargedPFOs[ipfo]->getHCALClusters().size(); ic++){
std::vector<const Cyber::CaloHit*> tmp_hits = m_chargedPFOs[ipfo]->getHCALClusters()[ic]->getCaloHits();
for(int ih=0; ih<tmp_hits.size(); ih++){
std::shared_ptr<CaloHit> tmp_newhit = tmp_hits[ih]->Clone();
tmp_newhit->setEnergy( tmp_newhit->getEnergy()*m_HcalEnScale );
m_newclus->addHit(tmp_newhit.get());
m_bkCol.map_CaloHit["bkHit"].push_back( tmp_newhit );
}
}
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
//cout<<"[FY debug] new HCAL cluster: hit size "<<m_newclus->getCaloHits().size()<<", total energy "<<m_newclus->getHitsE()<<endl;
//Create a new PFO
std::shared_ptr<Cyber::PFObject> m_newpfo = m_chargedPFOs[ipfo]->Clone();
std::vector<const Cyber::Calo3DCluster*> tmp_clusvec; tmp_clusvec.clear();
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
tmp_clusvec.push_back(m_newclus.get());
m_newpfo->setHCALCluster(tmp_clusvec);
m_bkCol.map_PFObjects["bkPFO"].push_back(m_newpfo);
auto iter = find(p_PFObjects->begin(), p_PFObjects->end(), m_chargedPFOs[ipfo]);
if(iter!=p_PFObjects->end())
*iter = m_newpfo;
m_chargedPFOs[ipfo] = m_newpfo;
//cout<<"[FY debug] The splitted new charged PFO: track size "<<m_newpfo->getTracks().size()<<", leading P "<<m_newpfo->getTrackMomentum();
//cout<<", ECAL cluster size "<<m_newpfo->getECALClusters().size()<<", totE "<<m_newpfo->getECALClusterEnergy();
//cout<<", HCAL cluster size "<<m_newpfo->getHCALClusters().size()<<", totE "<<m_newpfo->getHCALClusterEnergy()<<endl;
}
m_bkCol.map_CaloHit["bkHit"].push_back( m_hit );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_clus);
m_bkCol.map_PFObjects["bkPFO"].push_back(m_pfo);
}
return StatusCode::SUCCESS;
};
#endif