Newer
Older
#ifndef _TRACKCLUSTERCONNECTING_ALG_C
#define _TRACKCLUSTERCONNECTING_ALG_C
#include "Algorithm/TrackClusterConnectingAlg.h"
StatusCode TrackClusterConnectingAlg::ReadSettings(Settings& m_settings){
settings = m_settings;
//Initialize parameters
if(settings.map_stringPars.find("ReadinECALClusterName")==settings.map_stringPars.end()) settings.map_stringPars["ReadinECALClusterName"] = "EcalCluster";
if(settings.map_stringPars.find("ReadinHCALClusterName")==settings.map_stringPars.end()) settings.map_stringPars["ReadinHCALClusterName"] = "HcalCluster";
if(settings.map_floatPars.find("th_ChFragEn")==settings.map_floatPars.end()) settings.map_floatPars["th_ChFragEn"] = 2.;
if(settings.map_floatPars.find("th_ChFragDepth")==settings.map_floatPars.end()) settings.map_floatPars["th_ChFragDepth"] = 100.;
if(settings.map_floatPars.find("th_ChFragMinR")==settings.map_floatPars.end()) settings.map_floatPars["th_ChFragMinR"] = 200.;
if(settings.map_floatPars.find("th_HcalMatchingaR")==settings.map_floatPars.end()) settings.map_floatPars["th_HcalMatchingR"] = 100.;
if(settings.map_floatPars.find("th_MIPEnergy")==settings.map_floatPars.end()) settings.map_floatPars["th_MIPEnergy"] = 0.5;
if(settings.map_floatPars.find("th_AbsorbCone")==settings.map_floatPars.end()) settings.map_floatPars["th_AbsorbCone"] = 0.8;
if(settings.map_stringPars.find("OutputMergedECALCluster")==settings.map_stringPars.end()) settings.map_stringPars["OutputMergedECALCluster"] = "TrkMergedECAL";
if(settings.map_stringPars.find("OutputCombPFO")==settings.map_stringPars.end()) settings.map_stringPars["OutputCombPFO"] = "outputPFO";
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::Initialize( CyberDataCol& m_datacol ){
m_EcalClusters.clear();
m_HcalClusters.clear();
m_tracks.clear();
m_absorbedEcal.clear();
m_PFObjects.clear();
m_bkCol.Clear();
for(int ic=0; ic<m_datacol.map_CaloCluster[settings.map_stringPars["ReadinECALClusterName"]].size(); ic++){
m_EcalClusters.push_back( m_datacol.map_CaloCluster[settings.map_stringPars["ReadinECALClusterName"]][ic].get() );
}
for(int ic=0; ic<m_datacol.map_CaloCluster[settings.map_stringPars["ReadinHCALClusterName"]].size(); ic++){
m_HcalClusters.push_back( m_datacol.map_CaloCluster[settings.map_stringPars["ReadinHCALClusterName"]][ic].get() );
}
for(int itrk=0; itrk<m_datacol.TrackCol.size(); itrk++){
m_tracks.push_back( m_datacol.TrackCol[itrk].get() );
}
//cout<<"Readin Track size: "<<m_tracks.size()<<", ECAL cluster size: "<<m_EcalClusters.size()<<", HCAL cluster size "<<m_HcalClusters.size()<<endl;
//cout<<"Print all ECAL cluster "<<endl;
//for(int ic=0; ic<m_EcalClusters.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_EcalClusters[ic]->getLongiE()<<", track size "<<m_EcalClusters[ic]->getAssociatedTracks().size();
// if(m_EcalClusters[ic]->getAssociatedTracks().size()>0) cout<<", Leading track P = "<<m_EcalClusters[ic]->getAssociatedTracks()[0]->getMomentum()<<endl;
// else cout<<endl;
//}
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::RunAlgorithm( CyberDataCol& m_datacol ){
//Readin: tracks, ECAL clusters and HCAL clusters.
//Output: PFObject
//1. Merge ECAL clusters.
//Possible to add some cluster ID and merge functions.
m_absorbedEcal.clear();
EcalChFragAbsorption(m_EcalClusters, m_tracks, m_absorbedEcal);
//cout<<" TrackClusterConnectingAlg: After ECAL charged fragment absorption: cluster size "<<m_absorbedEcal.size()<<endl;
//2. Create PFObject with ECAL cluster and track
std::vector<const Cyber::Calo3DCluster*> tmp_constClus;
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
for(int ic=0; ic<m_absorbedEcal.size(); ic++) tmp_constClus.push_back(m_absorbedEcal[ic].get());
PFOCreating(tmp_constClus, m_tracks, m_PFObjects);
//cout<<" TrackClusterConnectingAlg: created PFO: "<<m_PFObjects.size()<<endl;
//for(int i=0; i<m_PFObjects.size(); i++){
// cout<<" PFO #"<<i<<": track size "<<m_PFObjects[i]->getTracks().size()<<", leading P "<<m_PFObjects[i]->getTrackMomentum();
// cout<<", ECAL cluster size "<<m_PFObjects[i]->getECALClusters().size()<<", totE "<<m_PFObjects[i]->getECALClusterEnergy();
// cout<<", HCAL cluster size "<<m_PFObjects[i]->getHCALClusters().size()<<", totE "<<m_PFObjects[i]->getHCALClusterEnergy()<<endl;
//}
//3. Add HCAL clusters into the PFObject.
std::sort(m_PFObjects.begin(), m_PFObjects.end(), compTrkP);
HcalExtrapolatingMatch(m_HcalClusters, m_PFObjects);
//cout<<" TrackClusterConnectingAlg: PFO size after HCAL matching: "<<m_PFObjects.size()<<endl;
//for(int i=0; i<m_PFObjects.size(); i++){
// cout<<" PFO #"<<i<<": track size "<<m_PFObjects[i]->getTracks().size()<<", leading P "<<m_PFObjects[i]->getTrackMomentum();
// cout<<", ECAL cluster size "<<m_PFObjects[i]->getECALClusters().size()<<", totE "<<m_PFObjects[i]->getECALClusterEnergy();
// cout<<", HCAL cluster size "<<m_PFObjects[i]->getHCALClusters().size()<<", totE "<<m_PFObjects[i]->getHCALClusterEnergy()<<endl;
//}
m_datacol.map_CaloCluster[ settings.map_stringPars["OutputMergedECALCluster"] ] = m_absorbedEcal;
m_datacol.map_PFObjects[settings.map_stringPars["OutputCombPFO"]] = m_PFObjects;
m_datacol.map_CaloCluster["bk3DCluster"].insert( m_datacol.map_CaloCluster["bk3DCluster"].end(), m_bkCol.map_CaloCluster["bk3DCluster"].begin(), m_bkCol.map_CaloCluster["bk3DCluster"].end() );
m_datacol.map_PFObjects["bkPFO"].insert( m_datacol.map_PFObjects["bkPFO"].end(), m_bkCol.map_PFObjects["bkPFO"].begin(), m_bkCol.map_PFObjects["bkPFO"].end() );
m_datacol.map_PFObjects["bkPFO"].insert( m_datacol.map_PFObjects["bkPFO"].end(), m_PFObjects.begin(), m_PFObjects.end() );
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::ClearAlgorithm(){
m_EcalClusters.clear();
m_HcalClusters.clear();
m_tracks.clear();
m_absorbedEcal.clear();
m_PFObjects.clear();
m_bkCol.Clear();
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::PFOCreating( std::vector<const Cyber::Calo3DCluster*>& m_clusters,
std::vector<const Cyber::Track*>& m_trks,
std::vector<std::shared_ptr<Cyber::PFObject>>& m_PFOs ){
//cout<<" PFOCreating: Track size "<<m_trks.size()<<", Cluster size "<<m_clusters.size()<<endl;
//for(int ic=0; ic<m_clusters.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_clusters[ic]->getLongiE()<<", track size "<<m_clusters[ic]->getAssociatedTracks().size();
// if(m_clusters[ic]->getAssociatedTracks().size()>0) cout<<", Leading track P = "<<m_clusters[ic]->getAssociatedTracks()[0]->getMomentum()<<endl;
// else cout<<endl;
//}
std::vector<const Cyber::Track*> m_leftTrks = m_trks;
for(int ic=0; ic<m_clusters.size(); ic++){
std::shared_ptr<Cyber::PFObject> m_newPFO = std::make_shared<Cyber::PFObject>();
m_newPFO->addECALCluster( m_clusters[ic] );
std::vector<const Cyber::Track*> m_trkInClus = m_clusters[ic]->getAssociatedTracks();
if(m_trkInClus.size()!=0){
m_newPFO->addTrack( m_trkInClus[0] );
auto iter = find(m_leftTrks.begin(), m_leftTrks.end(), m_trkInClus[0]);
if( iter!=m_leftTrks.end() )
m_leftTrks.erase(iter);
}
m_PFOs.push_back(m_newPFO);
m_bkCol.map_PFObjects["bkPFO"].push_back(m_newPFO);
}
for(int itrk=0; itrk<m_leftTrks.size(); itrk++){
std::shared_ptr<Cyber::PFObject> m_newPFO = std::make_shared<Cyber::PFObject>();
m_newPFO->addTrack( m_leftTrks[itrk] );
m_PFOs.push_back(m_newPFO);
m_bkCol.map_PFObjects["bkPFO"].push_back(m_newPFO);
}
return StatusCode::SUCCESS;
}
StatusCode TrackClusterConnectingAlg::EcalChFragAbsorption( std::vector<const Cyber::Calo3DCluster*>& m_clusters,
std::vector<const Cyber::Track*>& m_trks,
std::vector<std::shared_ptr<Cyber::Calo3DCluster>>& m_newclusCol){
//cout<<" In EcalChFragAbsorption: Input track size "<<m_trks.size()<<", cluster size "<<m_clusters.size()<<endl;
//for(int ic=0; ic<m_clusters.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_clusters[ic]->getLongiE()<<", track size "<<m_clusters[ic]->getAssociatedTracks().size()<<endl;
//}
//1. Absorb neutral clusters to the nearby tracks
std::map<const Cyber::Track*, int> m_matchedTrkMap;
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
for(int ic=0; ic<m_clusters.size(); ic++){
for(int itrk=0; itrk<m_clusters[ic]->getAssociatedTracks().size(); itrk++){
if( find(m_trks.begin(), m_trks.end(), m_clusters[ic]->getAssociatedTracks()[itrk])!=m_trks.end() )
m_matchedTrkMap[m_clusters[ic]->getAssociatedTracks()[itrk]] = ic;
}
}
//cout<<" Matched track size: "<<m_matchedTrkMap.size()<<endl;
for(int ic=0; ic<m_clusters.size(); ic++){
if(m_clusters[ic]->getAssociatedTracks().size()!=0) continue;
double clusDepth = m_clusters[ic]->getDepthToECALSurface();
double clusEn = m_clusters[ic]->getLongiE();
double minR2trk = 9999;
int index = -1;
for(int itrk=0; itrk<m_trks.size(); itrk++){
double tmp_minR = GetMinR2Trk( m_clusters[ic], m_trks[itrk]);
if(tmp_minR<minR2trk){
minR2trk = tmp_minR;
index = itrk;
}
}
//cout<<" Clus #"<<ic<<": depth "<<clusDepth<<", En "<<clusEn<<", minR "<<minR2trk<<", index "<<index<<endl;
//if(index<0){
// std::cout<<"ERROR: can not find closest track "<<endl;
// continue;
//}
if( clusEn<settings.map_floatPars["th_ChFragEn"] && clusDepth>settings.map_floatPars["th_ChFragDepth"] && minR2trk<settings.map_floatPars["th_ChFragMinR"]){
const Cyber::Track* p_selTrk = m_trks[index]; //Closest track to this cluster.
if( m_matchedTrkMap.find(p_selTrk)==m_matchedTrkMap.end() ){ //This track does not match to any existing charged cluster
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = m_clusters[ic]->Clone();
m_newclus->addAssociatedTrack(p_selTrk);
m_newclusCol.push_back( m_newclus );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
}
else{
int tmp_index = m_matchedTrkMap[p_selTrk];
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = m_clusters[tmp_index]->Clone();
m_newclus->mergeCluster(m_clusters[ic]);
m_newclusCol.push_back( m_newclus );
m_matchedTrkMap.erase(p_selTrk);
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
}
}
else{
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = m_clusters[ic]->Clone();
m_newclusCol.push_back( m_newclus );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
}
}
for(auto iter: m_matchedTrkMap){
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = m_clusters[iter.second]->Clone();
m_newclusCol.push_back( m_newclus );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
}
//Merge clusters if linked to the same track
for(int ic=0; ic<m_newclusCol.size() && m_newclusCol.size()>1; ic++){
if(m_newclusCol[ic].get()->getAssociatedTracks().size()==0) continue;
std::vector<const Cyber::Track*> m_trkCol = m_newclusCol[ic].get()->getAssociatedTracks();
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
for(int jc=ic+1; jc<m_newclusCol.size(); jc++){
if(m_newclusCol[jc].get()->getAssociatedTracks().size()==0) continue;
for(int itrk=0; itrk<m_newclusCol[jc].get()->getAssociatedTracks().size(); itrk++){
if( find(m_trkCol.begin(), m_trkCol.end(), m_newclusCol[jc].get()->getAssociatedTracks()[itrk])!= m_trkCol.end() ){
m_newclusCol[ic].get()->mergeCluster( m_newclusCol[jc].get() );
m_newclusCol.erase(m_newclusCol.begin()+jc);
jc--;
if(jc<ic) jc=ic;
}
break;
}
}
}
for(int ic=0; ic<m_newclusCol.size(); ic++) m_newclusCol[ic].get()->getLinkedMCPfromHFCluster("LinkedLongiCluster");
//cout<<"After nearby absorption: Print ECAL cluster "<<endl;
//for(int ic=0; ic<m_newclusCol.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_newclusCol[ic]->getLongiE()<<", track size "<<m_newclusCol[ic]->getAssociatedTracks().size();
// if(m_newclusCol[ic]->getAssociatedTracks().size()>0) cout<<", Leading track P = "<<m_newclusCol[ic]->getAssociatedTracks()[0]->getMomentum()<<endl;
// else cout<<endl;
//}
//2. Find the shower vertex, absorb nearby neutral clusters (in a cone) into it.
std::vector<std::shared_ptr<Cyber::Calo3DCluster>> m_newChCluster;
std::vector<std::shared_ptr<Cyber::Calo3DCluster>> m_newNeuCluster;
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
for(int icl=0; icl<m_newclusCol.size(); icl++){
if(m_newclusCol[icl]->getAssociatedTracks().size()==0 ) m_newNeuCluster.push_back(m_newclusCol[icl]);
else m_newChCluster.push_back(m_newclusCol[icl]);
}
for(int icl=0; icl<m_newChCluster.size(); icl++){
TVector3 cent = m_newChCluster[icl]->getShowerCenter();
double tmp_Ecl = m_newChCluster[icl]->getLongiE();
//Veto mip clusters and Eclus>Ptrk
if(tmp_Ecl<settings.map_floatPars["th_MIPEnergy"]) continue;
if(tmp_Ecl>m_newChCluster[icl]->getAssociatedTracks()[0]->getMomentum()) continue;
//Absorb neutral clusters in a cone angle
for(int jcl=0; jcl<m_newNeuCluster.size(); jcl++){
//Do not absorb: En, Nhit, start layer,
TVector3 vec_pNeu = m_newNeuCluster[jcl]->getShowerCenter();
if( cent.Angle(vec_pNeu-cent)<settings.map_floatPars["th_AbsorbCone"] ){
m_newChCluster[icl]->mergeCluster(m_newNeuCluster[jcl].get());
auto iter = find(m_newclusCol.begin(), m_newclusCol.end(), m_newNeuCluster[jcl]);
m_newclusCol.erase(iter);
m_newNeuCluster.erase(m_newNeuCluster.begin()+jcl);
jcl--;
}
}
}
//for(int ic=0; ic<m_newclusCol.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_newclusCol[ic]->getLongiE()<<", track size "<<m_newclusCol[ic]->getAssociatedTracks().size()<<endl;
//}
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::HcalExtrapolatingMatch(std::vector<const Cyber::Calo3DCluster*>& m_clusters, std::vector<std::shared_ptr<Cyber::PFObject>>& m_PFOs){
for(int ic=0; ic<m_clusters.size(); ic++){
std::vector<const Cyber::CaloHit*> hcal_hits = m_clusters[ic]->getCaloHits();
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//cout<<"HCAL Cluster #"<<ic<<": Nhit "<<hcal_hits.size()<<", En "<<m_clusters[ic]->getHitsE()<<endl;
bool isInPfo = false;
int index_selPfo = -1;
for(int ipfo=0; ipfo<m_PFOs.size(); ipfo++){
//Link HCAL cluster to charged PFO
if(m_PFOs[ipfo]->getTracks().size()!=0){
std::vector<TrackState> trk_points = m_PFOs[ipfo]->getTracks()[0]->getAllTrackStates();
bool is_candidate = false;
double minDistance = 99999;
for(int ihit=0; ihit<hcal_hits.size(); ihit++){
if(is_candidate) break;
TVector3 hit_pos = hcal_hits[ihit]->getPosition();
for(int ipts=0; ipts<trk_points.size(); ipts++){
TVector3 hit_distance = hit_pos - trk_points[ipts].referencePoint;;
if(minDistance>hit_distance.Mag()) minDistance = hit_distance.Mag();
if(hit_distance.Mag()<settings.map_floatPars["th_HcalMatchingR"]){
is_candidate = true;
break;
}
}
}
//cout<<" Min distance "<<minDistance<<", is candidate "<<is_candidate<<endl;
if(is_candidate){
//cout<<" Pfo #"<<ipfo<<": Ntrk "<<m_PFOs[ipfo]->getTracks().size()<<", leading trk P "<<m_PFOs[ipfo]->getTrackMomentum()<<", trk state size "<<trk_points.size()<<endl;
//cout<<" Link cluster #"<<ic<<" to pfo #"<<ipfo<<endl;
m_PFOs[ipfo]->addHCALCluster( m_clusters[ic] );
isInPfo = true;
index_selPfo = ipfo;
break;
}
}
//Link HCAL cluster to neutral PFO
}//end loop pfos
//if(isInPfo) cout<<" Merged into PFO: Ptrk = "<<m_PFOs[index_selPfo]->getTrackMomentum()<<endl;
//If HCAL cluster is not linked to any existing PFO: create a new one.
if(!isInPfo){
//cout<<" Create a new neutral PFO "<<endl;
std::shared_ptr<Cyber::PFObject> m_newPFO = std::make_shared<Cyber::PFObject>();
m_newPFO->addHCALCluster( m_clusters[ic] );
m_PFOs.push_back(m_newPFO);
m_bkCol.map_PFObjects["bkPFO"].push_back(m_newPFO);
}
}
return StatusCode::SUCCESS;
}
double TrackClusterConnectingAlg::GetMinR2Trk( const Cyber::Calo3DCluster* p_clus, const Cyber::Track* m_trk){
if(!p_clus || !m_trk) return 99999;
double minR = 99999;
int index = -1;
TVector3 clus_position = p_clus->getShowerCenter();
std::vector<TrackState> trk_points = m_trk->getAllTrackStates();
for(int i=0; i<trk_points.size(); i++){
TVector3 hit_distance = clus_position - trk_points[i].referencePoint;
if(hit_distance.Mag()<minR) minR = hit_distance.Mag();
}
return minR;
}
#endif