Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <sstream>
// dependence
#include "RecActsTracking.h"
#include "GearSvc/IGearSvc.h"
// csv parser
// #include "csv2/writer.hpp"
// MC
#include "CLHEP/Units/SystemOfUnits.h"
using namespace Acts::UnitLiterals;
DECLARE_COMPONENT(RecActsTracking)
RecActsTracking::RecActsTracking(const std::string& name, ISvcLocator* svcLoc)
: GaudiAlgorithm(name, svcLoc)
{
// input collections
// declareProperty("VXDTrackerHits", _inVTXTrackHdl, "Handle of the Input VTX TrackerHits collection");
// declareProperty("SITTrackerHits", _inSITTrackHdl, "Handle of the Input SIT TrackerHits collection");
// declareProperty("VXDCollection", _inVTXColHdl, "Handle of the Input VTX Sim Hit collection");
// declareProperty("SITCollection", _inSITColHdl, "Handle of the Input SIT Sim Hit collection");
// declareProperty("MCParticleCollection", _inMCColHdl, "Handle of the Input MCParticle collection");
// Output Collections
// declareProperty("OutputTracks", _outColHdl, "Handle of the ACTS SiTrack output collection");
}
StatusCode RecActsTracking::initialize()
{
chronoStatSvc = service<IChronoStatSvc>("ChronoStatSvc");
_nEvt = 0;
if (!std::filesystem::exists(TGeo_path.value())) {
error() << "CEPC TGeo file: " << TGeo_path.value() << " does not exist!" << endmsg;
return StatusCode::FAILURE;
}
if (!std::filesystem::exists(TGeo_config_path.value())) {
error() << "CEPC TGeo config file: " << TGeo_config_path.value() << " does not exist!" << endmsg;
return StatusCode::FAILURE;
}
if (!std::filesystem::exists(MaterialMap_path.value())) {
error() << "CEPC Material map file: " << MaterialMap_path.value() << " does not exist!" << endmsg;
return StatusCode::FAILURE;
}
TGeo_ROOTFilePath = TGeo_path.value();
TGeoConfig_jFilePath = TGeo_config_path.value();
MaterialMap_jFilePath = MaterialMap_path.value();
chronoStatSvc->chronoStart("read geometry");
m_geosvc = service<IGeomSvc>("GeomSvc");
if (!m_geosvc) {
error() << "Failed to find GeomSvc." << endmsg;
return StatusCode::FAILURE;
}
if(m_geosvc){
const dd4hep::Direction& field = m_geosvc->lcdd()->field().magneticField(dd4hep::Position(0,0,0));
m_field = field.z()/dd4hep::tesla;
}
m_vtx_surfaces = m_geosvc->getSurfaceMap("VXD");
debug() << "Surface map size: " << m_vtx_surfaces->size() << endmsg;
m_sit_surfaces = m_geosvc->getSurfaceMap("SIT");
debug() << "Surface map size: " << m_sit_surfaces->size() << endmsg;
vxd_decoder = m_geosvc->getDecoder("VXDCollection");
if(!vxd_decoder){
return StatusCode::FAILURE;
}
sit_decoder = m_geosvc->getDecoder("SITCollection");
if(!sit_decoder){
return StatusCode::FAILURE;
}
info() << "ACTS Tracking Geometry initialized successfully!" << endmsg;
// initialize tgeo detector
auto logger = Acts::getDefaultLogger("TGeoDetector", Acts::Logging::INFO);
trackingGeometry = buildTGeoDetector(geoContext, detElementStore, TGeo_ROOTFilePath, TGeoConfig_jFilePath, MaterialMap_jFilePath, *logger);
info() << "Seeding tools initialized successfully!" << endmsg;
// configure the acts tools
seed_cfg.seedFinderOptions.bFieldInZ = 3_T;
seed_cfg.seedFinderConfig.deltaRMin = 4_mm;
seed_cfg.seedFinderConfig.deltaRMax = 25_mm;
seed_cfg.seedFinderConfig.rMax = 40_mm;
seed_cfg.seedFinderConfig.rMin = 8_mm;
seed_cfg.seedFinderConfig.impactMax = 4_mm;
seed_cfg.seedFinderConfig.useVariableMiddleSPRange = false;
seed_cfg.seedFinderConfig.rMinMiddle = 15_mm; // range for middle spacepoint (TDR)
seed_cfg.seedFinderConfig.rMaxMiddle = 30_mm; // range for middle spacepoint (TDR)
// initialize the acts tools
seed_cfg.seedFilterConfig = seed_cfg.seedFilterConfig.toInternalUnits();
seed_cfg.seedFinderConfig.seedFilter =
std::make_unique<Acts::SeedFilter<SimSpacePoint>>(seed_cfg.seedFilterConfig);
seed_cfg.seedFinderConfig =
seed_cfg.seedFinderConfig.toInternalUnits().calculateDerivedQuantities();
seed_cfg.seedFinderOptions =
seed_cfg.seedFinderOptions.toInternalUnits().calculateDerivedQuantities(seed_cfg.seedFinderConfig);
seed_cfg.gridConfig = seed_cfg.gridConfig.toInternalUnits();
seed_cfg.gridOptions = seed_cfg.gridOptions.toInternalUnits();
if (std::isnan(seed_cfg.seedFinderConfig.deltaRMaxTopSP)) {
seed_cfg.seedFinderConfig.deltaRMaxTopSP = seed_cfg.seedFinderConfig.deltaRMax;}
if (std::isnan(seed_cfg.seedFinderConfig.deltaRMinTopSP)) {
seed_cfg.seedFinderConfig.deltaRMinTopSP = seed_cfg.seedFinderConfig.deltaRMin;}
if (std::isnan(seed_cfg.seedFinderConfig.deltaRMaxBottomSP)) {
seed_cfg.seedFinderConfig.deltaRMaxBottomSP = seed_cfg.seedFinderConfig.deltaRMax;}
if (std::isnan(seed_cfg.seedFinderConfig.deltaRMinBottomSP)) {
seed_cfg.seedFinderConfig.deltaRMinBottomSP = seed_cfg.seedFinderConfig.deltaRMin;}
m_bottomBinFinder = std::make_unique<const Acts::GridBinFinder<2ul>>(
seed_cfg.numPhiNeighbors, seed_cfg.zBinNeighborsBottom);
m_topBinFinder = std::make_unique<const Acts::GridBinFinder<2ul>>(
seed_cfg.numPhiNeighbors, seed_cfg.zBinNeighborsTop);
seed_cfg.seedFinderConfig.seedFilter =
std::make_unique<Acts::SeedFilter<SimSpacePoint>>(seed_cfg.seedFilterConfig);
m_seedFinder =
Acts::SeedFinder<SimSpacePoint, Acts::CylindricalSpacePointGrid<SimSpacePoint>>(seed_cfg.seedFinderConfig);
// initialize the ckf
findTracks = makeTrackFinderFunction(trackingGeometry, magneticField);
info() << "CKF Track Finder initialized successfully!" << endmsg;
chronoStatSvc->chronoStop("read geometry");
return GaudiAlgorithm::initialize();
}
StatusCode RecActsTracking::execute()
{
auto trkCol = _outColHdl.createAndPut();
bool MCsuccess = true;
const edm4hep::MCParticleCollection* mcCols = nullptr;
mcCols = _inMCColHdl.get();
if(mcCols)
{
for(auto particle : *mcCols)
{
if (particle.getPDG() != 13)
{
MCsuccess = false;
continue;
}
break;
}
}
if (!MCsuccess)
{
_nEvt++;
return StatusCode::SUCCESS;
}
SpacePointPtrs.clear();
sourceLinks.clear();
measurements.clear();
initialParameters.clear();
Selected_Seeds.clear();
chronoStatSvc->chronoStart("read input hits");
int successVTX = InitialiseVTX();
if (successVTX == 0)
{
_nEvt++;
return StatusCode::SUCCESS;
}
int successSIT = InitialiseSIT();
if (successSIT == 0)
{
_nEvt++;
return StatusCode::SUCCESS;
}
chronoStatSvc->chronoStop("read input hits");
// info() << "Generated " << SpacePointPtrs.size() << " spacepoints for event " << _nEvt << "!" << endmsg;
// info() << "Generated " << measurements.size() << " measurements for event " << _nEvt << "!" << endmsg;
// --------------------------------------------
// Seeding
// --------------------------------------------
chronoStatSvc->chronoStart("seeding");
// construct the seeding tools
// covariance tool, extracts covariances per spacepoint as required
auto extractGlobalQuantities = [=](const SimSpacePoint& sp, float, float, float)
{
Acts::Vector3 position{sp.x(), sp.y(), sp.z()};
Acts::Vector2 covariance{sp.varianceR(), sp.varianceZ()};
return std::make_tuple(position, covariance, sp.t());
};
// extent used to store r range for middle spacepoint
Acts::Extent rRangeSPExtent;
// construct the seeding tool
Acts::CylindricalSpacePointGrid<SimSpacePoint> grid =
Acts::CylindricalSpacePointGridCreator::createGrid<SimSpacePoint>(seed_cfg.gridConfig, seed_cfg.gridOptions);
Acts::CylindricalSpacePointGridCreator::fillGrid(
seed_cfg.seedFinderConfig, seed_cfg.seedFinderOptions, grid,
SpacePointPtrs.begin(), SpacePointPtrs.end(), extractGlobalQuantities, rRangeSPExtent);
std::array<std::vector<std::size_t>, 2ul> navigation;
navigation[1ul] = seed_cfg.seedFinderConfig.zBinsCustomLooping;
auto spacePointsGrouping = Acts::CylindricalBinnedGroup<SimSpacePoint>(
std::move(grid), *m_bottomBinFinder, *m_topBinFinder, std::move(navigation));
// safely clamp double to float
float up = Acts::clampValue<float>(
std::floor(rRangeSPExtent.max(Acts::binR) / 2) * 2);
/// variable middle SP radial region of interest
const Acts::Range1D<float> rMiddleSPRange(
std::floor(rRangeSPExtent.min(Acts::binR) / 2) * 2 +
seed_cfg.seedFinderConfig.deltaRMiddleMinSPRange,
up - seed_cfg.seedFinderConfig.deltaRMiddleMaxSPRange);
// run the seeding
static thread_local SimSeedContainer seeds;
seeds.clear();
static thread_local decltype(m_seedFinder)::SeedingState state;
state.spacePointData.resize(
SpacePointPtrs.size(),
seed_cfg.seedFinderConfig.useDetailedDoubleMeasurementInfo);
// use double stripe measurement
if (seed_cfg.seedFinderConfig.useDetailedDoubleMeasurementInfo)
{
for (std::size_t grid_glob_bin(0); grid_glob_bin < spacePointsGrouping.grid().size(); ++grid_glob_bin)
{
const auto& collection = spacePointsGrouping.grid().at(grid_glob_bin);
for (const auto& sp : collection)
{
std::size_t index = sp->index();
const float topHalfStripLength =
seed_cfg.seedFinderConfig.getTopHalfStripLength(sp->sp());
const float bottomHalfStripLength =
seed_cfg.seedFinderConfig.getBottomHalfStripLength(sp->sp());
const Acts::Vector3 topStripDirection =
seed_cfg.seedFinderConfig.getTopStripDirection(sp->sp());
const Acts::Vector3 bottomStripDirection =
seed_cfg.seedFinderConfig.getBottomStripDirection(sp->sp());
state.spacePointData.setTopStripVector(
index, topHalfStripLength * topStripDirection);
state.spacePointData.setBottomStripVector(
index, bottomHalfStripLength * bottomStripDirection);
state.spacePointData.setStripCenterDistance(
index, seed_cfg.seedFinderConfig.getStripCenterDistance(sp->sp()));
state.spacePointData.setTopStripCenterPosition(
index, seed_cfg.seedFinderConfig.getTopStripCenterPosition(sp->sp()));
}
}
}
for (const auto [bottom, middle, top] : spacePointsGrouping)
{
m_seedFinder.createSeedsForGroup(
seed_cfg.seedFinderOptions, state, spacePointsGrouping.grid(),
std::back_inserter(seeds), bottom, middle, top, rMiddleSPRange);
}
// int seed_counter = 0;
// for (const auto& seed : seeds)
// {
// for (const auto& sp : seed.sp())
// {
// info() << "found seed #" << seed_counter << ": x:" << sp->x() << " y: " << sp->y() << " z: " << sp->z() << endmsg;
// }
// seed_counter++;
// }
chronoStatSvc->chronoStop("seeding");
debug() << "Found " << seeds.size() << " seeds for event " << _nEvt << "!" << endmsg;
// --------------------------------------------
// track estimation
// --------------------------------------------
chronoStatSvc->chronoStart("track_param");
IndexSourceLink::SurfaceAccessor surfaceAccessor{*trackingGeometry};
for (std::size_t iseed = 0; iseed < seeds.size(); ++iseed)
{
const auto& seed = seeds[iseed];
// Get the bottom space point and its reference surface
const auto bottomSP = seed.sp().front();
const auto& sourceLink = bottomSP->sourceLinks()[0];
const Acts::Surface* surface = surfaceAccessor(sourceLink);
if (surface == nullptr) {
debug() << "Surface from source link is not found in the tracking geometry: iseed " << iseed << endmsg;
continue;
}
auto optParams = Acts::estimateTrackParamsFromSeed(
geoContext, seed.sp().begin(), seed.sp().end(), *surface, acts_field_value, bFieldMin);
if (!optParams.has_value()) {
debug() << "Estimation of track parameters for seed " << iseed << " failed." << endmsg;
continue;
}
const auto& params = optParams.value();
Acts::BoundSquareMatrix cov = Acts::BoundSquareMatrix::Zero();
for (std::size_t i = Acts::eBoundLoc0; i < Acts::eBoundSize; ++i) {
double sigma = initialSigmas[i];
sigma += initialSimgaQoverPCoefficients[i] * params[Acts::eBoundQOverP];
double var = sigma * sigma;
if (i == Acts::eBoundTime && !bottomSP->t().has_value()) { var *= noTimeVarInflation; }
var *= initialVarInflation[i];
cov(i, i) = var;
}
initialParameters.emplace_back(surface->getSharedPtr(), params, cov, particleHypothesis);
Selected_Seeds.push_back(seed);
}
chronoStatSvc->chronoStop("track_param");
debug() << "Found " << initialParameters.size() << " tracks for event " << _nEvt << "!" << endmsg;
// --------------------------------------------
// CKF track finding
// --------------------------------------------
chronoStatSvc->chronoStart("ckf_findTracks");
// Construct a perigee surface as the target surface
auto pSurface = Acts::Surface::makeShared<Acts::PerigeeSurface>(Acts::Vector3{0., 0., 0.});
PassThroughCalibrator pcalibrator;
MeasurementCalibratorAdapter calibrator(pcalibrator, measurements);
Acts::GainMatrixUpdater kfUpdater;
Acts::MeasurementSelector::Config measurementSelectorCfg =
{
{Acts::GeometryIdentifier(), {{}, {30}, {1u}}},
};
MeasurementSelector measSel{ Acts::MeasurementSelector(measurementSelectorCfg) };
using Extensions = Acts::CombinatorialKalmanFilterExtensions<Acts::VectorMultiTrajectory>;
BranchStopper branchStopper(trackSelectorCfg);
// Construct the CKF
Extensions extensions;
extensions.calibrator.connect<&MeasurementCalibratorAdapter::calibrate>(&calibrator);
extensions.updater.connect<&Acts::GainMatrixUpdater::operator()<Acts::VectorMultiTrajectory>>(&kfUpdater);
extensions.measurementSelector.connect<&MeasurementSelector::select>(&measSel);
extensions.branchStopper.connect<&BranchStopper::operator()>(&branchStopper);
IndexSourceLinkAccessor slAccessor;
slAccessor.container = &sourceLinks;
Acts::SourceLinkAccessorDelegate<IndexSourceLinkAccessor::Iterator> slAccessorDelegate;
slAccessorDelegate.connect<&IndexSourceLinkAccessor::range>(&slAccessor);
Acts::PropagatorPlainOptions firstPropOptions;
firstPropOptions.maxSteps = maxSteps;
firstPropOptions.direction = Acts::Direction::Forward;
Acts::PropagatorPlainOptions secondPropOptions;
secondPropOptions.maxSteps = maxSteps;
secondPropOptions.direction = firstPropOptions.direction.invert();
// Set the CombinatorialKalmanFilter options
TrackFinderOptions firstOptions(
geoContext, magFieldContext, calibContext,
slAccessorDelegate, extensions, firstPropOptions);
TrackFinderOptions secondOptions(
geoContext, magFieldContext, calibContext,
slAccessorDelegate, extensions, secondPropOptions);
secondOptions.targetSurface = pSurface.get();
Acts::Propagator<Acts::EigenStepper<>, Acts::Navigator> extrapolator(
Acts::EigenStepper<>(magneticField), Acts::Navigator({trackingGeometry}));
Acts::PropagatorOptions<Acts::ActionList<Acts::MaterialInteractor>, Acts::AbortList<Acts::EndOfWorldReached>>
extrapolationOptions(geoContext, magFieldContext);
auto trackContainer = std::make_shared<Acts::VectorTrackContainer>();
auto trackStateContainer = std::make_shared<Acts::VectorMultiTrajectory>();
auto trackContainerTemp = std::make_shared<Acts::VectorTrackContainer>();
auto trackStateContainerTemp = std::make_shared<Acts::VectorMultiTrajectory>();
TrackContainer tracks(trackContainer, trackStateContainer);
TrackContainer tracksTemp(trackContainerTemp, trackStateContainerTemp);
tracks.addColumn<unsigned int>("trackGroup");
tracksTemp.addColumn<unsigned int>("trackGroup");
Acts::ProxyAccessor<unsigned int> seedNumber("trackGroup");
unsigned int nSeed = 0;
// A map indicating whether a seed has been discovered already
std::unordered_map<SeedIdentifier, bool> discoveredSeeds;
auto addTrack = [&](const TrackProxy& track)
{
++m_nFoundTracks;
// flag seeds which are covered by the track
visitSeedIdentifiers(track, [&](const SeedIdentifier& seedIdentifier)
{
if (auto it = discoveredSeeds.find(seedIdentifier); it != discoveredSeeds.end())
{
it->second = true;
}
});
if (m_trackSelector.has_value() && !m_trackSelector->isValidTrack(track)) { return; }
++m_nSelectedTracks;
auto destProxy = tracks.makeTrack();
// make sure we copy track states!
destProxy.copyFrom(track, true);
};
for (const auto& seed : Selected_Seeds) {
SeedIdentifier seedIdentifier = makeSeedIdentifier(seed);
discoveredSeeds.emplace(seedIdentifier, false);
}
for (std::size_t iSeed = 0; iSeed < initialParameters.size(); ++iSeed)
{
m_nTotalSeeds++;
const auto& seed = Selected_Seeds[iSeed];
SeedIdentifier seedIdentifier = makeSeedIdentifier(seed);
// check if the seed has been discovered already
if (auto it = discoveredSeeds.find(seedIdentifier); it != discoveredSeeds.end() && it->second)
{
m_nDeduplicatedSeeds++;
continue;
}
/// Whether to stick on the seed measurements during track finding.
// measSel.setSeed(seed);
// Clear trackContainerTemp and trackStateContainerTemp
tracksTemp.clear();
const Acts::BoundTrackParameters& firstInitialParameters = initialParameters.at(iSeed);
auto firstResult = (*findTracks)(firstInitialParameters, firstOptions, tracksTemp);
nSeed++;
if (!firstResult.ok())
{
m_nFailedSeeds++;
continue;
}
auto& firstTracksForSeed = firstResult.value();
for (auto& firstTrack : firstTracksForSeed)
{
auto trackCandidate = tracksTemp.makeTrack();
trackCandidate.copyFrom(firstTrack, true);
auto firstSmoothingResult = Acts::smoothTrack(geoContext, trackCandidate);
if (!firstSmoothingResult.ok())
{
m_nFailedSmoothing++;
continue;
}
seedNumber(trackCandidate) = nSeed - 1;
auto firstExtrapolationResult = Acts::extrapolateTrackToReferenceSurface(
trackCandidate, *pSurface, extrapolator, extrapolationOptions, extrapolationStrategy);
if (!firstExtrapolationResult.ok())
{
m_nFailedExtrapolation++;
continue;
}
addTrack(trackCandidate);
}
}
chronoStatSvc->chronoStop("ckf_findTracks");
debug() << "CKF found " << tracks.size() << " tracks for event " << _nEvt << "!" << endmsg;
m_memoryStatistics.local().hist += tracks.trackStateContainer().statistics().hist;
auto constTrackStateContainer = std::make_shared<Acts::ConstVectorMultiTrajectory>(std::move(*trackStateContainer));
auto constTrackContainer = std::make_shared<Acts::ConstVectorTrackContainer>(std::move(*trackContainer));
ConstTrackContainer constTracks{constTrackContainer, constTrackStateContainer};
chronoStatSvc->chronoStart("writeout tracks");
if (constTracks.size() == 0) {
chronoStatSvc->chronoStop("writeout tracks");
_nEvt++;
return StatusCode::SUCCESS;
}
for (const auto& cur_track : constTracks)
{
auto writeout_track = trkCol->create();
int nVTXHit = 0, nFTDHit = 0, nSITHit = 0;
int getFirstHit = 0;
writeout_track.setChi2(cur_track.chi2());
writeout_track.setNdf(cur_track.nDoF());
writeout_track.setDEdx(cur_track.absoluteMomentum() / Acts::UnitConstants::GeV);
writeout_track.setDEdxError(cur_track.qOverP());
for (auto trackState : cur_track.trackStates()){
if (trackState.hasUncalibratedSourceLink()){
auto cur_measurement_sl = trackState.getUncalibratedSourceLink();
const auto& MeasSourceLink = cur_measurement_sl.get<IndexSourceLink>();
auto cur_measurement = measurements[MeasSourceLink.index()];
auto cur_measurement_gid = MeasSourceLink.geometryId();
if (std::find(VXD_inner_volume_ids.begin(), VXD_inner_volume_ids.end(), cur_measurement_gid.volume()) != VXD_inner_volume_ids.end()){
nVTXHit++;
} else if (std::find(SIT_acts_volume_ids.begin(), SIT_acts_volume_ids.end(), cur_measurement_gid.volume()) != SIT_acts_volume_ids.end()){
nSITHit++;
}
writeout_track.addToTrackerHits(MeasSourceLink.getTrackerHit());
if (!getFirstHit){
const auto& par = std::get<1>(cur_measurement).parameters();
const Acts::Surface* surface = surfaceAccessor(cur_measurement_sl);
auto acts_global_postion = surface->localToGlobal(geoContext, par, globalFakeMom);
writeout_track.setRadiusOfInnermostHit(
std::sqrt(acts_global_postion[0] * acts_global_postion[0] +
acts_global_postion[1] * acts_global_postion[1] +
acts_global_postion[2] * acts_global_postion[2])
);
getFirstHit = 1;
}
}
}
// SubdetectorHitNumbers: VXD = 0, FTD = 1, SIT = 2
writeout_track.addToSubdetectorHitNumbers(nVTXHit);
writeout_track.addToSubdetectorHitNumbers(nFTDHit);
writeout_track.addToSubdetectorHitNumbers(nSITHit);
std::array<float, 21> writeout_covMatrix;
auto cur_track_covariance = cur_track.covariance();
for (int i = 0; i < 6; i++) {
for (int j = 0; j < 6-i; j++) {
writeout_covMatrix[i * 6 + j] = cur_track_covariance(writeout_indices[i], writeout_indices[j]);
}
}
// location: At{Other|IP|FirstHit|LastHit|Calorimeter|Vertex}|LastLocation
// TrackState: location, d0, phi, omega, z0, tanLambda, time, referencePoint, covMatrix
edm4hep::TrackState writeout_trackState{
0, // location: AtOther
cur_track.loc0() / Acts::UnitConstants::mm, // d0
cur_track.phi(), // phi
cur_track.qOverP() * sin(cur_track.theta()) * _FCT * m_field, // omega = qop * sin(theta) * _FCT * bf
cur_track.loc1() / Acts::UnitConstants::mm, // z0
1 / tan(cur_track.theta()), // tanLambda = 1 / tan(theta)
cur_track.time(), // time
::edm4hep::Vector3f(0, 0, 0), // referencePoint
writeout_covMatrix
};
debug() << "Found track with momentum " << cur_track.absoluteMomentum() / Acts::UnitConstants::GeV << " !" << endmsg;
writeout_track.addToTrackStates(writeout_trackState);
}
chronoStatSvc->chronoStop("writeout tracks");
_nEvt++;
return StatusCode::SUCCESS;
}
StatusCode RecActsTracking::finalize()
{
debug() << "finalize RecActsTracking" << endmsg;
info() << "Total number of events processed: " << _nEvt << endmsg;
info() << "Total number of **TotalSeeds** processed: " << m_nTotalSeeds << endmsg;
info() << "Total number of **FoundTracks** processed: " << m_nFoundTracks << endmsg;
info() << "Total number of **SelectedTracks** processed: " << m_nSelectedTracks << endmsg;
return GaudiAlgorithm::finalize();
}
int RecActsTracking::InitialiseVTX()
{
int success = 1;
const edm4hep::TrackerHitCollection* hitVTXCol = nullptr;
const edm4hep::SimTrackerHitCollection* SimhitVTXCol = nullptr;
try {
hitVTXCol = _inVTXTrackHdl.get();
} catch (GaudiException& e) {
debug() << "Collection " << _inVTXTrackHdl.fullKey() << " is unavailable in event " << _nEvt << endmsg;
success = 0;
}
try {
SimhitVTXCol = _inVTXColHdl.get();
} catch (GaudiException& e) {
debug() << "Sim Collection " << _inVTXColHdl.fullKey() << " is unavailable in event " << _nEvt << endmsg;
success = 0;
}
if(hitVTXCol && SimhitVTXCol)
{
int nelem = hitVTXCol->size();
debug() << "Number of VTX hits = " << nelem << endmsg;
if ((nelem < 3) or (nelem > 10)) { success = 0; }
// std::string truth_file = "obj/vtx/truth/event" + std::to_string(_nEvt) + ".csv";
// std::ofstream truth_stream(truth_file);
// csv2::Writer<csv2::delimiter<','>> truth_writer(truth_stream);
// std::vector<std::string> truth_header = {"layer", "x", "y", "z"};
// truth_writer.write_row(truth_header);
// std::string converted_file = "obj/vtx/converted/event" + std::to_string(_nEvt) + ".csv";
// std::ofstream converted_stream(converted_file);
// csv2::Writer<csv2::delimiter<','>> converted_writer(converted_stream);
// std::vector<std::string> converted_header = {"layer", "x", "y", "z"};
// converted_writer.write_row(converted_header);
for (int ielem = 0; ielem < nelem; ++ielem)
{
auto hit = hitVTXCol->at(ielem);
auto simhit = SimhitVTXCol->at(ielem);
auto simcellid = simhit.getCellID();
// system:5,side:-2,layer:9,module:8,sensor:32:8
uint64_t m_layer = vxd_decoder->get(simcellid, "layer");
uint64_t m_module = vxd_decoder->get(simcellid, "module");
uint64_t m_sensor = vxd_decoder->get(simcellid, "sensor");
double acts_x = simhit.getPosition()[0];
double acts_y = simhit.getPosition()[1];
double acts_z = simhit.getPosition()[2];
double momentum_x = simhit.getMomentum()[0];
double momentum_y = simhit.getMomentum()[1];
double momentum_z = simhit.getMomentum()[2];
dd4hep::rec::ISurface* surface = nullptr;
auto it = m_vtx_surfaces->find(simcellid);
if (it != m_vtx_surfaces->end()) {
surface = it->second;
if (!surface) {
fatal() << "found surface for VTX cell id " << simcellid << ", but NULL" << endmsg;
return 0;
}
}
else {
fatal() << "not found surface for VTX cell id " << simcellid << endmsg;
return 0;
}
// dd4hep::rec::Vector3D oldPos(simhit.getPosition()[0]*dd4hep::mm/CLHEP::mm, simhit.getPosition()[1]*dd4hep::mm/CLHEP::mm, simhit.getPosition()[2]*dd4hep::mm/CLHEP::mm);
// dd4hep::rec::Vector2D localPoint = surface->globalToLocal(oldPos);
// if (m_layer < current_layer){
// info() << "ring hits happend in layer " << m_layer << " before layer " << current_layer << ", at event " << _nEvt << endmsg;
// success = 0;
// break;
// }
// current_layer = m_layer;
if (m_layer <= 3){
// set acts geometry identifier
// VXD_inner_volume_ids{16, 17, 18, 19};
uint64_t acts_volume = VXD_inner_volume_ids[m_layer];
uint64_t acts_boundary = 0;
uint64_t acts_layer = 2;
uint64_t acts_approach = 0;
uint64_t acts_sensitive = m_module + 1;
Acts::GeometryIdentifier moduleGeoId;
moduleGeoId.setVolume(acts_volume);
moduleGeoId.setBoundary(acts_boundary);
moduleGeoId.setLayer(acts_layer);
moduleGeoId.setApproach(acts_approach);
moduleGeoId.setSensitive(acts_sensitive);
// create and store the source link
uint32_t measurementIdx = measurements.size();
IndexSourceLink sourceLink{moduleGeoId, measurementIdx, hit};
sourceLinks.insert(sourceLinks.end(), sourceLink);
Acts::SourceLink sl{sourceLink};
boost::container::static_vector<Acts::SourceLink, 2> slinks;
slinks.emplace_back(sl);
// get the surface of the hit
IndexSourceLink::SurfaceAccessor surfaceAccessor{*trackingGeometry};
const Acts::Surface* acts_surface = surfaceAccessor(sl);
// get the local position of the hit
const Acts::Vector3 globalPos{acts_x, acts_y, acts_z};
const Acts::Vector3 globalmom{momentum_x, momentum_y, momentum_z};
auto acts_local_postion = acts_surface->globalToLocal(geoContext, globalPos, globalmom, onSurfaceTolerance);
if (!acts_local_postion.ok()){
info() << "Error: failed to get local position for VTX hit " << simcellid << endmsg;
acts_local_postion = acts_surface->globalToLocal(geoContext, globalPos, globalmom, 100*onSurfaceTolerance);
}
const std::array<Acts::BoundIndices, 2> indices{Acts::BoundIndices::eBoundLoc0, Acts::BoundIndices::eBoundLoc1};
const Acts::Vector2 par{acts_local_postion.value()[0], acts_local_postion.value()[1]};
// *** debug ***
debug() << "VXD measurements global position(x,y,z): " << simhit.getPosition()[0] << ", " << simhit.getPosition()[1] << ", " << simhit.getPosition()[2]
<< "; local position(loc0, loc1): "<< acts_local_postion.value()[0] << ", " << acts_local_postion.value()[1] << endmsg;
auto acts_global_postion = acts_surface->localToGlobal(geoContext, par, globalFakeMom);
debug() << "debug surface at: x:" << acts_global_postion[0] << ", y:" << acts_global_postion[1] << ", z:" << acts_global_postion[2] << endmsg;
// SimSpacePoint *hitExt = new SimSpacePoint(hit, simhit, slinks);
SimSpacePoint *hitExt = new SimSpacePoint(hit, acts_global_postion[0], acts_global_postion[1], acts_global_postion[2], 0.002, slinks);
// debug() << "debug hitExt at: x:" << hitExt->x() << ", y:" << hitExt->y() << ", z:" << hitExt->z() << endmsg;
SpacePointPtrs.push_back(hitExt);
// create and store the measurement
Acts::ActsSquareMatrix<2> cov = Acts::ActsSquareMatrix<2>::Identity();
cov(0, 0) = std::max<double>(std::abs(acts_global_postion[0] - simhit.getPosition()[0]), eps);
cov(1, 1) = std::max<double>(std::abs(acts_global_postion[1] - simhit.getPosition()[1]), eps);
measurements.emplace_back(Acts::Measurement<Acts::BoundIndices, 2>(sl, indices, par, cov));
// std::vector<std::string> truth_col = {std::to_string(m_layer*2 + m_module), std::to_string(simhit.getPosition()[0]), std::to_string(simhit.getPosition()[1]), std::to_string(simhit.getPosition()[2])};
// truth_writer.write_row(truth_col);
// std::vector<std::string> converted_col = {std::to_string(m_layer*2 + m_module), std::to_string(acts_global_postion[0]), std::to_string(acts_global_postion[1]), std::to_string(acts_global_postion[2])};
// converted_writer.write_row(converted_col);
} else {
// set acts geometry identifier
// VXD_outer_volume_id = 20;
uint64_t acts_volume = VXD_outer_volume_id;
uint64_t acts_boundary = 0;
uint64_t acts_layer = 2;
uint64_t acts_approach = 0;
uint64_t acts_sensitive = (m_layer == 5) ? m_module*2 + 1 : m_module*2 + 2;
Acts::GeometryIdentifier moduleGeoId;
moduleGeoId.setVolume(acts_volume);
moduleGeoId.setBoundary(acts_boundary);
moduleGeoId.setLayer(acts_layer);
moduleGeoId.setApproach(acts_approach);
moduleGeoId.setSensitive(acts_sensitive);
// create and store the source link
uint32_t measurementIdx = measurements.size();
IndexSourceLink sourceLink{moduleGeoId, measurementIdx, hit};
sourceLinks.insert(sourceLinks.end(), sourceLink);
Acts::SourceLink sl{sourceLink};
// get the local position of the hit
IndexSourceLink::SurfaceAccessor surfaceAccessor{*trackingGeometry};
const Acts::Surface* acts_surface = surfaceAccessor(sl);
const Acts::Vector3 globalPos{acts_x, acts_y, acts_z};
const Acts::Vector3 globalmom{momentum_x, momentum_y, momentum_z};
auto acts_local_postion = acts_surface->globalToLocal(geoContext, globalPos, globalmom, onSurfaceTolerance);
if (!acts_local_postion.ok()){
info() << "Error: failed to get local position for VTX hit " << simcellid << endmsg;
acts_local_postion = acts_surface->globalToLocal(geoContext, globalPos, globalmom, 100*onSurfaceTolerance);
}
const std::array<Acts::BoundIndices, 2> indices{Acts::BoundIndices::eBoundLoc0, Acts::BoundIndices::eBoundLoc1};
const Acts::Vector2 par{acts_local_postion.value()[0], acts_local_postion.value()[1]};
// *** debug ***
debug() << "VXD measurements global position(x,y,z): " << simhit.getPosition()[0] << ", " << simhit.getPosition()[1] << ", " << simhit.getPosition()[2]
<< "; local position(loc0, loc1): "<< acts_local_postion.value()[0] << ", " << acts_local_postion.value()[1] << endmsg;
auto acts_global_postion = acts_surface->localToGlobal(geoContext, par, globalFakeMom);
debug() << "debug surface at: x:" << acts_global_postion[0] << ", y:" << acts_global_postion[1] << ", z:" << acts_global_postion[2] << endmsg;
// create and store the measurement
Acts::ActsSquareMatrix<2> cov = Acts::ActsSquareMatrix<2>::Identity();
cov(0, 0) = std::max<double>(std::abs(acts_global_postion[0] - simhit.getPosition()[0]), eps);
cov(1, 1) = std::max<double>(std::abs(acts_global_postion[1] - simhit.getPosition()[1]), eps);
measurements.emplace_back(Acts::Measurement<Acts::BoundIndices, 2>(sl, indices, par, cov));
// std::vector<std::string> truth_col = {std::to_string(m_layer+4), std::to_string(simhit.getPosition()[0]), std::to_string(simhit.getPosition()[1]), std::to_string(simhit.getPosition()[2])};
// truth_writer.write_row(truth_col);
// std::vector<std::string> converted_col = {std::to_string(m_layer+4), std::to_string(acts_global_postion[0]), std::to_string(acts_global_postion[1]), std::to_string(acts_global_postion[2])};
// converted_writer.write_row(converted_col);
}
}
} else { success = 0; }
return success;
}
int RecActsTracking::InitialiseSIT()
{
int success = 1;
const edm4hep::TrackerHitCollection* hitSITCol = nullptr;
const edm4hep::SimTrackerHitCollection* SimhitSITCol = nullptr;
double min_z = 0;
try {
hitSITCol = _inSITTrackHdl.get();
} catch (GaudiException& e) {
debug() << "Collection " << _inSITTrackHdl.fullKey() << " is unavailable in event " << _nEvt << endmsg;
success = 0;
}
try {
SimhitSITCol = _inSITColHdl.get();
} catch (GaudiException& e) {
debug() << "Sim Collection " << _inSITColHdl.fullKey() << " is unavailable in event " << _nEvt << endmsg;
success = 0;
}
if(hitSITCol && SimhitSITCol)
{
int nelem = hitSITCol->size();
debug() << "Number of SIT hits = " << nelem << endmsg;
// SpacePointPtrs.resize(nelem);
// std::string truth_file = "obj/sit/truth/event" + std::to_string(_nEvt) + ".csv";
// std::ofstream truth_stream(truth_file);
// csv2::Writer<csv2::delimiter<','>> truth_writer(truth_stream);
// std::vector<std::string> truth_header = {"layer", "x", "y", "z"};
// truth_writer.write_row(truth_header);
// std::string converted_file = "obj/sit/converted/event" + std::to_string(_nEvt) + ".csv";
// std::ofstream converted_stream(converted_file);
// csv2::Writer<csv2::delimiter<','>> converted_writer(converted_stream);
// std::vector<std::string> converted_header = {"layer", "x", "y", "z"};
// converted_writer.write_row(converted_header);
for (int ielem = 0; ielem < nelem; ++ielem)
{
auto hit = hitSITCol->at(ielem);
auto simhit = SimhitSITCol->at(ielem);
auto simcellid = simhit.getCellID();
// <id>system:5,side:-2,layer:9,stave:8,module:8,sensor:5,y:-11,z:-11</id>
uint64_t m_layer = sit_decoder->get(simcellid, "layer");
uint64_t m_stave = sit_decoder->get(simcellid, "stave");
uint64_t m_module = sit_decoder->get(simcellid, "module");
uint64_t m_sensor = sit_decoder->get(simcellid, "sensor");
double acts_x = simhit.getPosition()[0];
double acts_y = simhit.getPosition()[1];
double acts_z = simhit.getPosition()[2];
double momentum_x = simhit.getMomentum()[0];
double momentum_y = simhit.getMomentum()[1];
double momentum_z = simhit.getMomentum()[2];
dd4hep::rec::ISurface* surface = nullptr;
auto it = m_sit_surfaces->find(simcellid);
if (it != m_sit_surfaces->end()) {
surface = it->second;
if (!surface) {
fatal() << "found surface for SIT cell id " << simcellid << ", but NULL" << endmsg;
return 0;
}
}
else {
fatal() << "not found surface for SIT cell id " << simcellid << endmsg;
return 0;
}
if (ielem == 0) {
min_z = hitSITCol->at(ielem).getPosition()[2];
} else {
if (std::abs(acts_z - min_z) > 100) {
continue;
}
}
// set acts geometry identifier
uint64_t acts_volume = SIT_acts_volume_ids[m_layer];
uint64_t acts_boundary = 0;
uint64_t acts_layer = 2;
uint64_t acts_approach = 0;
uint64_t acts_sensitive = m_stave*SIT_module_nums[m_layer]*SIT_sensor_nums + m_module*SIT_sensor_nums + m_sensor + 1;
Acts::GeometryIdentifier moduleGeoId;
moduleGeoId.setVolume(acts_volume);
moduleGeoId.setBoundary(acts_boundary);
moduleGeoId.setLayer(acts_layer);
moduleGeoId.setApproach(acts_approach);
moduleGeoId.setSensitive(acts_sensitive);
// create and store the source link
uint32_t measurementIdx = measurements.size();
IndexSourceLink sourceLink{moduleGeoId, measurementIdx, hit};
sourceLinks.insert(sourceLinks.end(), sourceLink);
Acts::SourceLink sl{sourceLink};
// get the local position of the hit
IndexSourceLink::SurfaceAccessor surfaceAccessor{*trackingGeometry};
const Acts::Surface* acts_surface = surfaceAccessor(sl);
const Acts::Vector3 globalPos{acts_x, acts_y, acts_z};
const Acts::Vector3 globalmom{momentum_x, momentum_y, momentum_z};
auto acts_local_postion = acts_surface->globalToLocal(geoContext, globalPos, globalmom, onSurfaceTolerance);
if (!acts_local_postion.ok()){
info() << "Error: failed to get local position for SIT hit " << simcellid << endmsg;
acts_local_postion = acts_surface->globalToLocal(geoContext, globalPos, globalmom, 100*onSurfaceTolerance);
}
const std::array<Acts::BoundIndices, 2> indices{Acts::BoundIndices::eBoundLoc0, Acts::BoundIndices::eBoundLoc1};
const Acts::Vector2 par{acts_local_postion.value()[0], acts_local_postion.value()[1]};
// *** debug ***
debug() << "SIT measurements global position(x,y,z): " << simhit.getPosition()[0] << ", " << simhit.getPosition()[1] << ", " << simhit.getPosition()[2]
<< "; local position(loc0, loc1): "<< acts_local_postion.value()[0] << ", " << acts_local_postion.value()[1] << endmsg;
auto acts_global_postion = acts_surface->localToGlobal(geoContext, par, globalFakeMom);
debug() << "debug surface at: x:" << acts_global_postion[0] << ", y:" << acts_global_postion[1] << ", z:" << acts_global_postion[2] << endmsg;
// create and store the measurement
Acts::ActsSquareMatrix<2> cov = Acts::ActsSquareMatrix<2>::Identity();
cov(0, 0) = std::max<double>(std::abs(acts_global_postion[0] - simhit.getPosition()[0]), eps);
cov(1, 1) = std::max<double>(std::abs(acts_global_postion[1] - simhit.getPosition()[1]), eps);
measurements.emplace_back(Acts::Measurement<Acts::BoundIndices, 2>(sl, indices, par, cov));
// std::vector<std::string> truth_col = {std::to_string(m_layer), std::to_string(simhit.getPosition()[0]), std::to_string(simhit.getPosition()[1]), std::to_string(simhit.getPosition()[2])};
// truth_writer.write_row(truth_col);
// std::vector<std::string> converted_col = {std::to_string(m_layer), std::to_string(acts_global_postion[0]), std::to_string(acts_global_postion[1]), std::to_string(acts_global_postion[2])};
// converted_writer.write_row(converted_col);
}
} else { success = 0; }
return success;
}