Newer
Older
#include "Tools/Fitter.h"
#include <algorithm>
//#include "marlin/Global.h"
//#include "UTIL/LCTrackerConf.h"
#include <UTIL/ILDConf.h>
#include <DD4hep/DD4hepUnits.h>
#include <DD4hep/Detector.h>
#include "TrackSystemSvc/HelixTrack.h"
#include "DataHelper/Navigation.h"
#include "Tools/KiTrackMarlinTools.h"
typedef std::vector<edm4hep::TrackerHit> TrackerHitVec;
using namespace MarlinTrk;
// by fucd: 3.5->3.0 default, will be read from GeomSvc
// if compare to Marlin, should change to 3.5
float Fitter::_bField = 3.5;//later on overwritten with the value read by geo file
void Fitter::init_BField(){
// B field from DD4hep
/*
dd4hep::Detector & lcdd = dd4hep::Detector::getInstance();
const double pos[3]={0,0,0};
double bFieldVec[3]={0,0,0};
lcdd.field().magneticField(pos,bFieldVec); // get the magnetic field vector from DD4hep
_bField = bFieldVec[2]/dd4hep::tesla; // z component at (0,0,0)
*/
}
bool compare_TrackerHit_z( edm4hep::TrackerHit a, edm4hep::TrackerHit b ){
return ( fabs(a.getPosition()[2]) < fabs( b.getPosition()[2]) ); //compare their z values
bool compare_TrackerHit_R( edm4hep::TrackerHit a, edm4hep::TrackerHit b ){
double Rad_a2 = (a.getPosition()[0]*a.getPosition()[0]) + (a.getPosition()[1]*a.getPosition()[1]) ;
double Rad_b2 = (b.getPosition()[0]*b.getPosition()[0]) + (b.getPosition()[1]*b.getPosition()[1]) ;
return ( Rad_a2 < Rad_b2 ); //compare their radii
}
Fitter::Fitter( edm4hep::MutableTrack* track , MarlinTrk::IMarlinTrkSystem* trkSystem ): _trkSystem( trkSystem ){
_trackerHits.clear();
std::copy(track->trackerHits_begin(), track->trackerHits_end(), std::back_inserter(_trackerHits));
//_trackerHits = track->getTrackerHits();
fit();
}
Fitter::Fitter( edm4hep::MutableTrack* track , MarlinTrk::IMarlinTrkSystem* trkSystem, int VXDFlag ): _trkSystem( trkSystem ){
_trackerHits.clear();
std::copy(track->trackerHits_begin(), track->trackerHits_end(), std::back_inserter(_trackerHits));
//_trackerHits = track->getTrackerHits();
fitVXD();
}
Fitter::Fitter( std::vector<edm4hep::TrackerHit> trackerHits , MarlinTrk::IMarlinTrkSystem* trkSystem ): _trkSystem( trkSystem ){
_trackerHits = trackerHits;
fit();
}
void Fitter::fitVXD(){
//create the MarlinTrk
_marlinTrk = _trkSystem->createTrack();
/**********************************************************************************************/
/* Add the hits to the MarlinTrack */
/**********************************************************************************************/
// hits are in reverse order
std::sort( _trackerHits.begin(), _trackerHits.end(), KiTrackMarlin::compare_TrackerHit_R );
// now at [0] is the hit with the smallest |z| and at [1] is the one with a bigger |z| and so on
// So the direction of the hits when following the index from 0 on is:
// from inside out: from the IP into the distance.
// (It is important to keep in mind, in which direction we fit, when using MarlinTrk)
TrackerHitVec::iterator it;
unsigned number_of_added_hits = 0;
unsigned ndof_added = 0;
std::vector< edm4hep::TrackerHit > added_hits;
std::vector< edm4hep::TrackerHit > added_hits_2D;
for( it = _trackerHits.begin() ; it != _trackerHits.end() ; ++it ) {
edm4hep::TrackerHit trkHit = Navigation::Instance()->GetTrackerHit((*it).getObjectID());
bool isSuccessful = false;
if( UTIL::BitSet32( trkHit.getType() )[ UTIL::ILDTrkHitTypeBit::COMPOSITE_SPACEPOINT ] ){ //it is a composite spacepoint
//Split it up and hits to the MarlinTrk
std::vector< edm4hep::TrackerHit > rawHits;
//const LCObjectVec rawObjects = trkHit.getRawHits();
//for( unsigned k=0; k<rawObjects.size(); k++ ) rawHits.push_back( dynamic_cast< ConstTrackerHit >( rawObjects[k] ) );
int nRawHit = trkHit.rawHits_size();
for( unsigned k=0; k< nRawHit; k++ ){
edm4hep::TrackerHit rawHit = Navigation::Instance()->GetTrackerHit(trkHit.getRawHits(k));
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
rawHits.push_back(rawHit);
}
std::sort( rawHits.begin(), rawHits.end(), compare_TrackerHit_R );
for( unsigned k=0; k< rawHits.size(); k++ ){
if( _marlinTrk->addHit( rawHits[k] ) == IMarlinTrack::success ){
isSuccessful = true; //if at least one hit from the spacepoint gets added
++ndof_added; // 1 degree of freedom for each strip hit
}
else{
//std::cout << "Cannot addHit " << rawHits[k]->id() << " to MarlinTrk" << std::endl;
}
}
}
else { // normal non composite hit
if (_marlinTrk->addHit( trkHit ) == 0) {
isSuccessful = true;
ndof_added += 2;
}
}
if (isSuccessful) {
added_hits.push_back(trkHit);
++number_of_added_hits;
}
else{
//std::cout << "DEBUG Fitter::fit(): Hit " << it - _trackerHits.begin() << " Dropped " << std::endl;
}
}
if( ndof_added < 6 ) {
std::stringstream s;
s << "Fitter::fit(): Cannot fit less with less than 6 degrees of freedom. Number of hits = " << number_of_added_hits << " ndof = " << ndof_added << "\n";
throw FitterException( s.str() );
}
/**********************************************************************************************/
/* Create a helix from the first, last and middle hit */
/**********************************************************************************************/
for (unsigned ihit=0; ihit <added_hits.size(); ++ihit) {
// check if this a space point or 2D hit
if(UTIL::BitSet32( added_hits[ihit].getType() )[ UTIL::ILDTrkHitTypeBit::ONE_DIMENSIONAL ] == false ){
// then add to the list
added_hits_2D.push_back(added_hits[ihit]);
}
}
// initialise with space-points not strips
// make a helix from 3 hits to get a trackstate
const edm4hep::Vector3d x1 = added_hits_2D[0].getPosition();
const edm4hep::Vector3d x2 = added_hits_2D[ added_hits_2D.size()/2 ].getPosition();
const edm4hep::Vector3d x3 = added_hits_2D.back().getPosition();
init_BField();
HelixTrack helixTrack( x1, x2, x3, _bField, HelixTrack::forwards );
helixTrack.moveRefPoint(0.0, 0.0, 0.0);
//const float referencePoint[3] = { float(helixTrack.getRefPointX()) , float(helixTrack.getRefPointY() ), float(helixTrack.getRefPointZ() )};
edm4hep::Vector3f referencePoint = { float(helixTrack.getRefPointX()) , float(helixTrack.getRefPointY() ), float(helixTrack.getRefPointZ() )};
/**********************************************************************************************/
/* Create a TrackStateImpl from the helix values and use it to initalise the fit */
/**********************************************************************************************/
for (unsigned icov = 0; icov<covMatrix.size(); ++icov) {
covMatrix[icov] = 0;
}
covMatrix[0] = ( 1.e6 ); //sigma_d0^2
covMatrix[2] = ( 1.e2 ); //sigma_phi0^2
covMatrix[5] = ( 1.e-4 ); //sigma_omega^2
covMatrix[9] = ( 1.e6 ); //sigma_z0^2
covMatrix[14] = ( 1.e2 ); //sigma_tanl^2
edm4hep::TrackState trackState = {0/*TrackState::AtOther*/,
helixTrack.getD0(),
helixTrack.getPhi0(),
helixTrack.getOmega(),
helixTrack.getZ0(),
helixTrack.getTanLambda(),
0.f, // dummy value for time
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
referencePoint,
covMatrix};
//init_BField();
_marlinTrk->initialise( trackState, _bField, IMarlinTrack::backward ) ;
// _marlinTrk->initialise( IMarlinTrack::backward ) ;
/**********************************************************************************************/
/* Do the fit */
/**********************************************************************************************/
int fit_status = 0;
try{
fit_status = _marlinTrk->fit() ;
}
catch( MarlinTrk::Exception& e ){
std::stringstream s;
s << "Fitter::fit(): Couldn't fit, MarlinTrk->fit() gave: " << e.what() << "\n";
throw FitterException( s.str() );
}
if( fit_status != IMarlinTrack::success ){
std::stringstream s;
s << "Fitter::fit(): MarlinTrk->fit() wasn't successful, fit_status = " << fit_status << "\n";
throw FitterException( s.str() );
}
// fitting finished get hits in the fit for safety checks:
std::vector<std::pair<edm4hep::TrackerHit, double> > hits_in_fit;
// remember the hits are ordered in the order in which they were fitted
// here we are fitting inwards so the first is the last and vice verse
_marlinTrk->getHitsInFit(hits_in_fit);
if( hits_in_fit.size() < 3 ) {
std::stringstream s;
s << "Fitter::fit() Less than 3 hits in fit: Only " << hits_in_fit.size() <<
" of " << _trackerHits.size() << " hits\n";
throw FitterException( s.str() );
}
edm4hep::TrackerHit first_hit_in_fit = hits_in_fit.back().first;
throw FitterException( std::string("Fitter::fit(): TrackerHit pointer to first hit == NULL ") ) ;
}
edm4hep::TrackerHit last_hit_in_fit = hits_in_fit.front().first;
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
throw FitterException( std::string("Fitter::fit(): TrackerHit pointer to last hit == NULL ") ) ;
}
return;
}
void Fitter::fit(){
//create the MarlinTrk
_marlinTrk = _trkSystem->createTrack();
/**********************************************************************************************/
/* Add the hits to the MarlinTrack */
/**********************************************************************************************/
// hits are in reverse order
std::sort( _trackerHits.begin(), _trackerHits.end(), KiTrackMarlin::compare_TrackerHit_z );
// now at [0] is the hit with the smallest |z| and at [1] is the one with a bigger |z| and so on
// So the direction of the hits when following the index from 0 on is:
// from inside out: from the IP into the distance.
// (It is important to keep in mind, in which direction we fit, when using MarlinTrk)
TrackerHitVec::iterator it;
unsigned number_of_added_hits = 0;
unsigned ndof_added = 0;
std::vector<edm4hep::TrackerHit> added_hits;
for( it = _trackerHits.begin() ; it != _trackerHits.end() ; ++it ) {
edm4hep::TrackerHit trkHit = Navigation::Instance()->GetTrackerHit((*it).getObjectID());
bool isSuccessful = false;
//std::cout << "Hit " << trkHit->id() << " " << trkHit.getPosition() << std::endl;
if( UTIL::BitSet32( trkHit.getType() )[ UTIL::ILDTrkHitTypeBit::COMPOSITE_SPACEPOINT ] ){ //it is a composite spacepoint
//Split it up and hits to the MarlinTrk
std::vector<edm4hep::TrackerHit> rawHits;
//const LCObjectVec rawObjects = trkHit.getRawHits();
//for( unsigned k=0; k<rawObjects.size(); k++ ) rawHits.push_back( dynamic_cast< ConstTrackerHit >( rawObjects[k] ) );
int nRawHit = trkHit.rawHits_size();
for( unsigned k=0; k< nRawHit; k++ ){
edm4hep::TrackerHit rawHit = Navigation::Instance()->GetTrackerHit(trkHit.getRawHits(k));
//std::cout << "Raw Hit " << rawHit->id() << " " << rawHit.getPosition() << std::endl;
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
rawHits.push_back(rawHit);
}
std::sort( rawHits.begin(), rawHits.end(), compare_TrackerHit_z );
for( unsigned k=0; k< rawHits.size(); k++ ){
if( _marlinTrk->addHit( rawHits[k] ) == IMarlinTrack::success ){
isSuccessful = true; //if at least one hit from the spacepoint gets added
++ndof_added; // 1 degree of freedom for each strip hit
}
else{
//std::cout << "Cannot addHit " << rawHits[k]->id() << " to MarlinTrk" << std::endl;
}
}
}
else { // normal non composite hit
if (_marlinTrk->addHit( trkHit ) == 0) {
isSuccessful = true;
ndof_added += 2;
}
}
if (isSuccessful) {
added_hits.push_back(trkHit);
++number_of_added_hits;
}
else{
//std::cout << "DEBUG: Fitter::fit(): Hit " << it - _trackerHits.begin() << " Dropped " << std::endl;
}
}
if( ndof_added < 6 ) {
std::stringstream s;
s << "Fitter::fit(): Cannot fit less with less than 6 degrees of freedom. Number of hits = " << number_of_added_hits << " ndof = " << ndof_added << "\n";
throw FitterException( s.str() );
}
/**********************************************************************************************/
/* Create a helix from the first, last and middle hit */
/**********************************************************************************************/
// initialise with space-points not strips
// make a helix from 3 hits to get a trackstate
const edm4hep::Vector3d x1 = added_hits[0].getPosition();
const edm4hep::Vector3d x2 = added_hits[ added_hits.size()/2 ].getPosition();
const edm4hep::Vector3d x3 = added_hits.back().getPosition();
init_BField();
HelixTrack helixTrack( x1, x2, x3, _bField, HelixTrack::forwards );
helixTrack.moveRefPoint(0.0, 0.0, 0.0);
//const float referencePoint[3] = { float(helixTrack.getRefPointX()) , float(helixTrack.getRefPointY()) , float(helixTrack.getRefPointZ()) };
edm4hep::Vector3f referencePoint = { float(helixTrack.getRefPointX()) , float(helixTrack.getRefPointY()) , float(helixTrack.getRefPointZ()) };
/**********************************************************************************************/
/* Create a TrackStateImpl from the helix values and use it to initalise the fit */
/**********************************************************************************************/
decltype(edm4hep::TrackState::covMatrix) covMatrix;
for (unsigned icov = 0; icov<covMatrix.size(); ++icov) {
covMatrix[icov] = 0;
}
covMatrix[0] = ( 1.e6 ); //sigma_d0^2
covMatrix[2] = ( 1.e2 ); //sigma_phi0^2
covMatrix[5] = ( 1.e-4 ); //sigma_omega^2
covMatrix[9] = ( 1.e6 ); //sigma_z0^2
covMatrix[14] = ( 1.e2 ); //sigma_tanl^2
edm4hep::TrackState trackState = {0/*TrackState::AtOther*/,
helixTrack.getD0(),
helixTrack.getPhi0(),
helixTrack.getOmega(),
helixTrack.getZ0(),
helixTrack.getTanLambda(),
0.f, // dummy value for time
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
referencePoint,
covMatrix};
//init_BField();
_marlinTrk->initialise( trackState, _bField, IMarlinTrack::backward ) ;
// _marlinTrk->initialise( IMarlinTrack::backward ) ;
/**********************************************************************************************/
/* Do the fit */
/**********************************************************************************************/
int fit_status = 0;
try{
fit_status = _marlinTrk->fit() ;
}
catch( MarlinTrk::Exception& e ){
std::stringstream s;
s << "Fitter::fit(): Couldn't fit, MarlinTrk->fit() gave: " << e.what() << "\n";
throw FitterException( s.str() );
}
if( fit_status != IMarlinTrack::success ){
std::stringstream s;
s << "Fitter::fit(): MarlinTrk->fit() wasn't successful, fit_status = " << fit_status << "\n";
throw FitterException( s.str() );
}
// fitting finished get hits in the fit for safety checks:
std::vector<std::pair<edm4hep::TrackerHit, double> > hits_in_fit;
// remember the hits are ordered in the order in which they were fitted
// here we are fitting inwards so the first is the last and vice verse
_marlinTrk->getHitsInFit(hits_in_fit);
if( hits_in_fit.size() < 3 ) {
std::stringstream s;
s << "Fitter::fit() Less than 3 hits in fit: Only " << hits_in_fit.size()
<< " of " << _trackerHits.size() << " hits\n";
throw FitterException( s.str() );
}
edm4hep::TrackerHit first_hit_in_fit = hits_in_fit.back().first;
throw FitterException( std::string("Fitter::fit(): TrackerHit pointer to first hit == NULL ") ) ;
}
edm4hep::TrackerHit last_hit_in_fit = hits_in_fit.front().first;
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
throw FitterException( std::string("Fitter::fit(): TrackerHit pointer to last hit == NULL ") ) ;
}
return;
}
const edm4hep::TrackState* Fitter::getTrackState( int trackStateLocation ){
return getTrackStatePlus( trackStateLocation )->getTrackState();
}
double Fitter::getChi2Prob( int trackStateLocation ){
return ROOT::Math::chisquared_cdf_c( getChi2( trackStateLocation ) , getNdf( trackStateLocation ) );
}
double Fitter::getChi2( int trackStateLocation ){
return getTrackStatePlus( trackStateLocation )->getChi2();
}
int Fitter::getNdf( int trackStateLocation ){
return getTrackStatePlus( trackStateLocation )->getNdf();
}
const TrackStatePlus* Fitter::getTrackStatePlus( int trackStateLocation ){
// check if there is already an entry with this trackState location
for( unsigned i=0; i<_trackStatesPlus.size(); i++ ){
if( _trackStatesPlus[i]->getTrackState()->location == trackStateLocation ){
return _trackStatesPlus[i];
}
}
// If we reach this point, obviously no trackState with the given location has been created so far
// Thus we create it now
edm4hep::TrackState* trackState = new edm4hep::TrackState;
int return_code = 0;
double chi2;
int ndf;
switch( trackStateLocation ){
case 1/*lcio::TrackState::AtIP*/:{
const edm4hep::Vector3d point(0.,0.,0.); // nominal IP
return_code = _marlinTrk->propagate(point, *trackState, chi2, ndf ) ;
if (return_code != MarlinTrk::IMarlinTrack::success ) {
delete trackState;
std::stringstream s;
s << "Fitter::getTrackStatePlus(): Couldn't create TrackState at IP, return code from propagation = " << return_code << "\n";
throw FitterException( s.str() );
break;
}
else{
trackState->location = trackStateLocation;
TrackStatePlus* trackStatePlus = new TrackStatePlus( trackState, chi2, ndf );
_trackStatesPlus.push_back( trackStatePlus );
return trackStatePlus;
}
}
case 2/*lcio::TrackState::AtFirstHit*/:{
std::vector<std::pair<edm4hep::TrackerHit, double> > hits_in_fit;
// remember the hits are ordered in the order in which they were fitted
// here we are fitting inwards so the first is the last and vice verse
_marlinTrk->getHitsInFit(hits_in_fit);
edm4hep::TrackerHit first_hit_in_fit = hits_in_fit.back().first;
return_code = _marlinTrk->getTrackState(first_hit_in_fit, *trackState, chi2, ndf ) ;
if(return_code !=MarlinTrk::IMarlinTrack::success){
delete trackState;
std::stringstream s;
s << "Fitter::getTrackStatePlus(): Couldn't create TrackState at first hit, return code from propagation = " << return_code << "\n";
throw FitterException( s.str() );
break;
}
else{
trackState->location = trackStateLocation;
TrackStatePlus* trackStatePlus = new TrackStatePlus( trackState, chi2, ndf );
_trackStatesPlus.push_back( trackStatePlus );
return trackStatePlus;
}
}
case 3/*lcio::TrackState::AtLastHit*/:{
std::vector<std::pair<edm4hep::TrackerHit, double> > hits_in_fit;
_marlinTrk->getHitsInFit(hits_in_fit);
edm4hep::TrackerHit last_hit_in_fit = hits_in_fit.front().first;
return_code = _marlinTrk->getTrackState(last_hit_in_fit, *trackState, chi2, ndf ) ;
if(return_code !=MarlinTrk::IMarlinTrack::success){
delete trackState;
std::stringstream s;
s << "Fitter::getTrackStatePlus(): Couldn't create TrackState at last hit, return code from propagation = " << return_code << "\n";
throw FitterException( s.str() );
break;
}
else{
trackState->location = trackStateLocation;
TrackStatePlus* trackStatePlus = new TrackStatePlus( trackState, chi2, ndf );
_trackStatesPlus.push_back( trackStatePlus );
return trackStatePlus;
}
break;
}
case 4/*lcio::TrackState::AtCalorimeter*/:{
std::vector<std::pair<edm4hep::TrackerHit, double> > hits_in_fit;
_marlinTrk->getHitsInFit(hits_in_fit);
edm4hep::TrackerHit last_hit_in_fit = hits_in_fit.front().first;
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
UTIL::BitField64 encoder( UTIL::ILDCellID0::encoder_string ) ;
encoder.reset() ; // reset to 0
// ================== need to get the correct ID(s) for the calorimeter face ============================
unsigned ecal_barrel_face_ID = UTIL::ILDDetID::ECAL ;
//unsigned ecal_endcap_face_ID = UTIL::ILDDetID::ECAL_ENDCAP ;
//=========================================================================================================
encoder[UTIL::ILDCellID0::subdet] = ecal_barrel_face_ID ;
encoder[UTIL::ILDCellID0::side] = UTIL::ILDDetID::barrel;
encoder[UTIL::ILDCellID0::layer] = 0 ;
int detElementID = 0;
return_code = _marlinTrk->propagateToLayer(encoder.lowWord(), last_hit_in_fit, *trackState, chi2, ndf, detElementID, IMarlinTrack::modeForward ) ;
if (return_code == MarlinTrk::IMarlinTrack::no_intersection ) { // try forward or backward
//encoder[UTIL::ILDCellID0::subdet] = ecal_endcap_face_ID ;
const edm4hep::TrackState* trkStateLastHit = getTrackStatePlus( 3/*lcio::TrackState::AtLastHit*/ )->getTrackState();
if (trkStateLastHit->tanLambda>0) {
encoder[UTIL::ILDCellID0::side] = UTIL::ILDDetID::fwd;
}
else{
encoder[UTIL::ILDCellID0::side] = UTIL::ILDDetID::bwd;
}
return_code = _marlinTrk->propagateToLayer(encoder.lowWord(), last_hit_in_fit, *trackState, chi2, ndf, detElementID, IMarlinTrack::modeForward ) ;
}
if(return_code !=MarlinTrk::IMarlinTrack::success){
delete trackState;
std::stringstream s;
s << "Fitter::getTrackStatePlus(): Couldn't create TrackState at Calorimeter, return code from propagation = " << return_code << "\n";
throw FitterException( s.str() );
break;
}
else{
trackState->location = trackStateLocation;
TrackStatePlus* trackStatePlus = new TrackStatePlus( trackState, chi2, ndf );
_trackStatesPlus.push_back( trackStatePlus );
return trackStatePlus;
}
}
default:{
std::stringstream s;
s << "Creation of a trackState for the given location " << trackStateLocation
<< " is not yet implemented for the class Fitter. \nImplemented are: AtIP, AtFirstHit, AtLastHit, AtCalorimeter.\n"
<< "If another location is desired, it must be implemented in the method Fitter::getTrackStatePlus.\n";
throw FitterException( s.str() );
return NULL;
}
}
return NULL; // if we haven't returned so far, there was no success, so we return NULL
}