Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#ifndef _TRACKEXTRAPOLATING_ALG_C
#define _TRACKEXTRAPOLATING_ALG_C
#include "TVector2.h"
#include "Algorithm/TrackExtrapolatingAlg.h"
#include "Objects/Track.h"
#include "Objects/TrackState.h"
using namespace TMath;
using namespace std;
StatusCode TrackExtrapolatingAlg::ReadSettings(Settings& m_settings){
settings = m_settings;
//Initialize parameters
// ECAL parameters
if(settings.map_floatPars.find("ECAL_innermost_distance")==settings.map_floatPars.end())
settings.map_floatPars["ECAL_innermost_distance"] = 1830;
if(settings.map_floatPars.find("ECAL_outermost_distance")==settings.map_floatPars.end())
settings.map_floatPars["ECAL_outermost_distance"] = 1830+300;
if(settings.map_intPars.find("ECAL_Nlayers")==settings.map_intPars.end())
settings.map_intPars["ECAL_Nlayers"] = 28;
if(settings.map_floatPars.find("ECAL_layer_width")==settings.map_floatPars.end())
settings.map_floatPars["ECAL_layer_width"] = 10;
if(settings.map_floatPars.find("ECAL_half_length")==settings.map_floatPars.end())
settings.map_floatPars["ECAL_half_length"] = 2900;
// HCAL parameters
if(settings.map_floatPars.find("HCAL_innermost_distance")==settings.map_floatPars.end())
settings.map_floatPars["HCAL_innermost_distance"] = 2140;
if(settings.map_floatPars.find("HCAL_outermost_distance")==settings.map_floatPars.end())
settings.map_floatPars["HCAL_outermost_distance"] = 3455;
if(settings.map_intPars.find("HCAL_Nlayers")==settings.map_intPars.end())
settings.map_intPars["HCAL_Nlayers"] = 48;
if(settings.map_floatPars.find("HCAL_layer_width")==settings.map_floatPars.end())
settings.map_floatPars["HCAL_layer_width"] = 26.61;
if(settings.map_floatPars.find("HCAL_sensitive_distance")==settings.map_floatPars.end())
settings.map_floatPars["HCAL_sensitive_distance"] = 22.81; // distance between sensitive material and front face of each layer
if(settings.map_floatPars.find("HCAL_half_length")==settings.map_floatPars.end())
settings.map_floatPars["HCAL_half_length"] = 3230;
if(settings.map_intPars.find("Nmodule")==settings.map_intPars.end())
settings.map_intPars["Nmodule"] = 32;
if(settings.map_floatPars.find("B_field")==settings.map_floatPars.end())
settings.map_floatPars["B_field"] = 3.0;
if(settings.map_intPars.find("Input_track")==settings.map_intPars.end())
settings.map_intPars["Input_track"] = 0; // 0: reconstructed tracks. 1: MC particle track
return StatusCode::SUCCESS;
};
StatusCode TrackExtrapolatingAlg::Initialize( CyberDataCol& m_datacol ){
std::cout<<"Initialize TrackExtrapolatingAlg"<<std::endl;
return StatusCode::SUCCESS;
};
StatusCode TrackExtrapolatingAlg::RunAlgorithm( CyberDataCol& m_datacol ){
//std::cout<<"---oooOO0OOooo--- Excuting TrackExtrapolatingAlg ---oooOO0OOooo---"<<std::endl;
std::vector<std::shared_ptr<Cyber::Track>>* p_tracks = &(m_datacol.TrackCol);
std::vector<float> ECAL_layer_radius; // Layer radius from ECAL innermost distance to outermost distance; spacing: ECAL_layer_width/2
std::vector<float> HCAL_layer_radius;
GetLayerRadius(ECAL_layer_radius, HCAL_layer_radius);
for(int itrk=0; itrk<p_tracks->size(); itrk++){
// Only tracks that reach ECAL should be processed.
if(!IsReachECAL( p_tracks->at(itrk).get() )) continue;
// get track state at calorimeter
Cyber::TrackState CALO_trk_state;
GetTrackStateAtCalo(p_tracks->at(itrk).get(), CALO_trk_state);
ExtrapolateByRadius(ECAL_layer_radius, HCAL_layer_radius, CALO_trk_state, p_tracks->at(itrk).get());
} // end loop tracks
p_tracks = nullptr;
return StatusCode::SUCCESS;
}; // RunAlgorithm end
StatusCode TrackExtrapolatingAlg::ClearAlgorithm(){
std::cout<<"End run TrackExtrapolatingAlg. Clean it."<<std::endl;
return StatusCode::SUCCESS;
};
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
StatusCode TrackExtrapolatingAlg::GetLayerRadius(std::vector<float> & ECAL_layer_radius, std::vector<float> & HCAL_layer_radius){
// ECAL
float tmp_ecal_radius = settings.map_floatPars["ECAL_innermost_distance"] + 0.5*settings.map_floatPars["ECAL_layer_width"];
while(tmp_ecal_radius < settings.map_floatPars["ECAL_outermost_distance"]){
ECAL_layer_radius.push_back(tmp_ecal_radius);
tmp_ecal_radius += 0.5 * settings.map_floatPars["ECAL_layer_width"];
}
// HCAL
float tmp_hcal_radius = settings.map_floatPars["HCAL_innermost_distance"] + 0.5*settings.map_floatPars["HCAL_layer_width"];
while(tmp_hcal_radius < settings.map_floatPars["HCAL_outermost_distance"]){
HCAL_layer_radius.push_back(tmp_hcal_radius);
tmp_hcal_radius += 0.5 * settings.map_floatPars["HCAL_layer_width"];
}
return StatusCode::SUCCESS;
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
bool TrackExtrapolatingAlg::IsReachECAL(Cyber::Track * track){
if(settings.map_intPars["Input_track"] == 0){
// The track is reconstructed in ECAL. If the track reach ECAL, it should have track state at calorimeter
std::vector<TrackState> input_trackstates = track->getTrackStates("Input");
int count=0;
TVector3 t_vec;
for(int i=0; i<input_trackstates.size(); i++){
if(input_trackstates[i].location==Cyber::TrackState::AtCalorimeter){
count++;
t_vec = input_trackstates[i].referencePoint;
break;
}
}
if(count==0){
// The track has no track state at calorimeter
return false;
}
if( Abs(Abs(t_vec.Z())-settings.map_floatPars["ECAL_half_length"]) < 1.0 ){
// The track escape from endcap
return false;
}
return true;
}
else if(settings.map_intPars["Input_track"] == 1){
// The track is from MC particle as ideal helix.
// The pT should large enough to reach ECAL. The pz should not be so large that it escape from endcap
std::vector<TrackState> input_trackstates = track->getTrackStates("Input");
if(input_trackstates.size()==0){
std::cout << "Error! No track state!" << std::endl;
return false;
}
TrackState IP_trk_state;
for(int i=0; i<input_trackstates.size(); i++){
if(input_trackstates[i].location==Cyber::TrackState::AtIP)
IP_trk_state = input_trackstates[i];
break;
}
TVector3 ref_point = IP_trk_state.referencePoint;
double rho = GetRho(IP_trk_state);
double r_max = TMath::Sqrt(ref_point.X()*ref_point.X() + ref_point.Y()*ref_point.Y()) + rho*2;
if(r_max<settings.map_floatPars["ECAL_innermost_distance"]){ return false; }
return true;
}
else{
std::cout << "Error, wrong source of input tracks for TrackExtrapolatingAlg!" << std:: endl;
return false;
}
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
StatusCode TrackExtrapolatingAlg::GetTrackStateAtCalo(Cyber::Track * track,
Cyber::TrackState & trk_state_at_calo){
std::vector<TrackState> input_trackstates = track->getTrackStates("Input");
if(settings.map_intPars["Input_track"] == 0){
for(int its=0; its<input_trackstates.size(); its++){
if(input_trackstates[its].location==Cyber::TrackState::AtCalorimeter){
trk_state_at_calo=input_trackstates[its];
break;
}
}
}
else if((settings.map_intPars["Input_track"] == 1)){
for(int its=0; its<input_trackstates.size(); its++){
if(input_trackstates[its].location==Cyber::TrackState::AtIP){
trk_state_at_calo=input_trackstates[its];
break;
}
}
}
else{
std::cout << "Error, wrong source of input tracks for TrackExtrapolatingAlg!" << std:: endl;
}
return StatusCode::SUCCESS;
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
StatusCode TrackExtrapolatingAlg::ExtrapolateByRadius( const std::vector<float> & ECAL_layer_radius, std::vector<float> & HCAL_layer_radius,
const Cyber::TrackState & CALO_trk_state, Cyber::Track* p_track){
// Extrapolate points to circles with specific radius
float rho = GetRho(CALO_trk_state);
TVector2 center = GetCenterOfCircle(CALO_trk_state, rho);
float alpha0 = GetRefAlpha0(CALO_trk_state, center);
std::vector<float> ECAL_delta_phi = GetDeltaPhi(rho, center, alpha0, ECAL_layer_radius, CALO_trk_state);
std::vector<float> HCAL_delta_phi = GetDeltaPhi(rho, center, alpha0, HCAL_layer_radius, CALO_trk_state);
std::vector<TVector3> ECAL_ext_points = GetExtrapoPoints("ECAL", rho, center, alpha0, CALO_trk_state, ECAL_delta_phi);
std::vector<TVector3> HCAL_ext_points = GetExtrapoPoints("HCAL", rho, center, alpha0, CALO_trk_state, HCAL_delta_phi);
// Sort Extrapolated points
std::vector<TrackState> t_ECAL_states;
for(int ip=0; ip<ECAL_ext_points.size(); ip++){
TrackState t_state = CALO_trk_state;
t_state.location = Cyber::TrackState::AtOther;
t_state.referencePoint = ECAL_ext_points[ip];
// Note GetExtrapolatedPhi0 is not same as the definition of phi0 in TrackState
t_state.phi0 = GetExtrapolatedPhi0(CALO_trk_state.Kappa, CALO_trk_state.phi0, center, ECAL_ext_points[ip]);
t_ECAL_states.push_back(t_state);
}
// std::sort(t_ECAL_states.begin(), t_ECAL_states.end(), SortByPhi0);
p_track->setTrackStates("Ecal", t_ECAL_states);
std::vector<TrackState> t_HCAL_states;
for(int ip=0; ip<HCAL_ext_points.size(); ip++){
TrackState t_state = CALO_trk_state;
t_state.location = Cyber::TrackState::AtOther;
t_state.referencePoint = HCAL_ext_points[ip];
// Note GetExtrapolatedPhi0 is not same as the definition of phi0 in TrackState
t_state.phi0 = GetExtrapolatedPhi0(CALO_trk_state.Kappa, CALO_trk_state.phi0, center, HCAL_ext_points[ip]);
t_HCAL_states.push_back(t_state);
}
// std::sort(t_HCAL_states.begin(), t_HCAL_states.end(), SortByPhi0);
p_track->setTrackStates("Hcal", t_HCAL_states);
return StatusCode::SUCCESS;
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
float TrackExtrapolatingAlg::GetRho(const Cyber::TrackState & trk_state){
float rho = Abs(1000. / (0.3*settings.map_floatPars["B_field"]*trk_state.Kappa));
return rho;
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
TVector2 TrackExtrapolatingAlg::GetCenterOfCircle(const Cyber::TrackState & trk_state, const float & rho){
float phi;
if(trk_state.Kappa>=0) phi = trk_state.phi0 - Pi()/2;
else phi = trk_state.phi0 + Pi()/2;
float xc = trk_state.referencePoint.X() + ((rho+trk_state.D0)*Cos(phi));
float yc = trk_state.referencePoint.Y() + ((rho+trk_state.D0)*Sin(phi));
TVector2 center(xc, yc);
return center;
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
float TrackExtrapolatingAlg::GetRefAlpha0(const Cyber::TrackState & trk_state, const TVector2 & center){
float deltaX = trk_state.referencePoint.X() - center.X();
float deltaY = trk_state.referencePoint.Y() - center.Y();
float alpha0 = ATan2(deltaY, deltaX);
return alpha0;
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
std::vector<float> TrackExtrapolatingAlg::GetDeltaPhi(float rho, TVector2 center, float alpha0, vector<float> layer_radius, const Cyber::TrackState & CALO_trk_state){
std::vector<float> delta_phi;
for(int il=0; il<layer_radius.size(); il++){
float param0 = (Power(layer_radius[il], 2) - center.Mod2() - Power(rho, 2)) / (2 * rho * center.Mod());
if(Abs(param0)>1) continue;
float t_as = ASin(param0);
float param1 = ATan2(center.X(), center.Y());
float layer_delta_phi1 = t_as - alpha0 - param1;
float layer_delta_phi2;
if(t_as<0) layer_delta_phi2 = -Pi() - t_as - alpha0 - param1;
else layer_delta_phi2 = Pi() - t_as - alpha0 - param1;
while(layer_delta_phi1>Pi()) layer_delta_phi1 = layer_delta_phi1 - 2*Pi();
while(layer_delta_phi1<-Pi()) layer_delta_phi1 = layer_delta_phi1 + 2*Pi();
while(layer_delta_phi2>Pi()) layer_delta_phi2 = layer_delta_phi2 - 2*Pi();
while(layer_delta_phi2<-Pi()) layer_delta_phi2 = layer_delta_phi2 + 2*Pi();
if(CALO_trk_state.Kappa < 0){
delta_phi.push_back(layer_delta_phi1);
}
else if(CALO_trk_state.Kappa > 0){
delta_phi.push_back(layer_delta_phi2);
}
else{
std::cout << "TrackExtrapolatingAlg: Error! Kappa=0!" << std::endl;
}
}
return delta_phi;
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
std::vector<TVector3> TrackExtrapolatingAlg::GetExtrapoPoints(std::string calo_name,
float rho, TVector2 center, float alpha0,
const Cyber::TrackState & CALO_trk_state,
const std::vector<float>& delta_phi){
std::vector<TVector3> ext_points;
for(int ip=0; ip<delta_phi.size(); ip++){
float x = center.X() + (rho*Cos(alpha0+delta_phi[ip]));
float y = center.Y() + (rho*Sin(alpha0+delta_phi[ip]));
float z;
if(CALO_trk_state.Kappa > 0){
z = CALO_trk_state.referencePoint.Z() + CALO_trk_state.Z0 -
(delta_phi[ip]*rho*CALO_trk_state.tanLambda);
}else{
z = CALO_trk_state.referencePoint.Z() + CALO_trk_state.Z0 +
(delta_phi[ip]*rho*CALO_trk_state.tanLambda);
}
if(calo_name=="ECAL"){
if(Abs(z)>settings.map_floatPars["ECAL_half_length"]) continue;
if(Sqrt(x*x+y*y) > settings.map_floatPars["ECAL_outermost_distance"]) continue;
if(Sqrt(x*x+y*y) < settings.map_floatPars["ECAL_innermost_distance"]) continue;
}
else if(calo_name=="HCAL"){
if(Abs(z)>settings.map_floatPars["HCAL_half_length"]) continue;
if(Sqrt(x*x+y*y) > settings.map_floatPars["HCAL_outermost_distance"]) continue;
}
else continue;
TVector3 extp(x,y,z);
ext_points.push_back(extp);
}
return ext_points;
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
bool TrackExtrapolatingAlg::IsReturn(float rho, TVector2 & center){
float farest = rho + center.Mod();
if (farest < settings.map_floatPars["ECAL_outermost_distance"]/Cos(Pi()/settings.map_intPars["Nmodule"])+100) {return true;}
else{return false;}
}
// ...oooOO0OOooo......oooOO0OOooo......oooOO0OOooo...
float TrackExtrapolatingAlg::GetExtrapolatedPhi0(float Kappa, float ECAL_phi0, TVector2 center, TVector3 ext_point){
// Note: phi0 of extrapolated points is (phi of velocity at extrapolated point) - (phi of velocity at ECAL front face)
TVector2 ext_point_xy(ext_point.X(), ext_point.Y());
TVector2 ext2center = center - ext_point_xy;
float ext_phi0;
if(Kappa>=0) ext_phi0 = ext2center.Phi() + TMath::Pi()/2.;
else ext_phi0 = ext2center.Phi() - TMath::Pi()/2.;
float phi0 = ext_phi0 - ECAL_phi0;
while(phi0 < -Pi()) phi0 = phi0 + 2*Pi();
while(phi0 > Pi()) phi0 = phi0 - 2*Pi();
return phi0;
}
#endif