Newer
Older
Markus Frank
committed
//==========================================================================
// AIDA Detector description implementation for LCD
Markus Frank
committed
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
Markus Frank
committed
// All rights reserved.
Markus Frank
committed
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
Markus Frank
committed
// Author : M.Frank
//
//==========================================================================
// Framework include files
#include "DD4hep/Printout.h"
#include "DD4hep/InstanceCount.h"
#include "DDG4/Geant4Random.h"
#include "DDG4/Geant4IsotropeGenerator.h"
using namespace std;
using namespace DD4hep::Simulation;
/// Standard constructor
Markus Frank
committed
Geant4IsotropeGenerator::Geant4IsotropeGenerator(Geant4Context* ctxt, const string& nam)
Markus Frank
committed
: Geant4ParticleGenerator(ctxt, nam)
{
InstanceCount::increment(this);
declareProperty("PhiMin", m_phiMin = 0.0);
declareProperty("PhiMax", m_phiMax = 2.0*M_PI);
declareProperty("ThetaMin", m_thetaMin = 0.0);
declareProperty("ThetaMax", m_thetaMax = M_PI);
declareProperty("Distribution", m_distribution = "uniform" );
}
/// Default destructor
Geant4IsotropeGenerator::~Geant4IsotropeGenerator() {
InstanceCount::decrement(this);
}
/// Uniform particle distribution
void Geant4IsotropeGenerator::getParticleDirectionUniform(int, ROOT::Math::XYZVector& direction, double& momentum) const {
Geant4Event& evt = context()->event();
Geant4Random& rnd = evt.random();
double phi = m_phiMin+(m_phiMax-m_phiMin)*rnd.rndm();
double theta = m_thetaMin+(m_thetaMax-m_thetaMin)*rnd.rndm();
double x1 = std::sin(theta)*std::cos(phi);
double x2 = std::sin(theta)*std::sin(phi);
double x3 = std::cos(theta);
direction.SetXYZ(x1,x2,x3);
momentum = rnd.rndm()*momentum;
/// Particle distribution ~ cos(theta)
void Geant4IsotropeGenerator::getParticleDirectionCosTheta(int, ROOT::Math::XYZVector& direction, double& momentum) const {
Geant4Event& evt = context()->event();
Geant4Random& rnd = evt.random();
double phi = m_phiMin+(m_phiMax-m_phiMin)*rnd.rndm();
double cos_theta = std::cos(m_thetaMin)+(std::cos(m_thetaMax)-std::cos(m_thetaMin))*rnd.rndm();
double sin_theta = std::sqrt(1.0-cos_theta*cos_theta);
double x1 = sin_theta*std::cos(phi);
double x2 = sin_theta*std::sin(phi);
double x3 = cos_theta;
direction.SetXYZ(x1,x2,x3);
momentum = rnd.rndm()*momentum;
}
/// Particle distribution flat in eta (pseudo rapidity)
void Geant4IsotropeGenerator::getParticleDirectionEta(int, ROOT::Math::XYZVector& direction, double& momentum) const {
struct Distribution {
static double eta(double x) { return -1.0*std::log(std::tan(x/2.0)); }
};
Geant4Event& evt = context()->event();
Geant4Random& rnd = evt.random();
// See https://en.wikipedia.org/wiki/Pseudorapidity
const double dmin = std::numeric_limits<double>::epsilon();
double phi = m_phiMin+(m_phiMax-m_phiMin)*rnd.rndm();
double eta_min = Distribution::eta(m_thetaMin>dmin ? m_thetaMin : dmin);
double eta_max = Distribution::eta(m_thetaMax>(M_PI-dmin) ? m_thetaMax : M_PI-dmin);
double eta = eta_min + (eta_max-eta_min)*rnd.rndm();
double x1 = std::cos(phi);
double x2 = std::sin(phi);
double x3 = std::sinh(eta);
double r = std::sqrt(1.0+x3*x3);
direction.SetXYZ(x1/r,x2/r,x3/r);
momentum = rnd.rndm()*momentum;
}
/// e+e- --> ffbar particle distribution ~ 1 + cos^2(theta)
void Geant4IsotropeGenerator::getParticleDirectionFFbar(int, ROOT::Math::XYZVector& direction, double& momentum) const {
struct Distribution {
static double ffbar(double x) { double c = std::cos(x); return 1 + c*c; }
//static double integral(double x) { return 1.5*x + sin(2.*x)/4.0; }
};
Geant4Event& evt = context()->event();
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Geant4Random& rnd = evt.random();
double phi = m_phiMin+(m_phiMax-m_phiMin)*rnd.rndm();
// 1 + cos^2(theta) cannot be integrated and then inverted.
// We have to throw the dice until it fits.....
double v1 = Distribution::ffbar(m_thetaMin), v2 = Distribution::ffbar(m_thetaMax);
double vmax = std::max(v1,v2); // ffbar symmetric and monotonic in |x|.
while(1) {
double dice = rnd.rndm()*vmax;
double theta = m_thetaMin+(m_thetaMax-m_thetaMin)*rnd.rndm();
double dist = Distribution::ffbar(theta);
if ( dice <= dist ) {
double x1 = std::sin(theta)*std::cos(phi);
double x2 = std::sin(theta)*std::sin(phi);
double x3 = std::cos(theta);
direction.SetXYZ(x1,x2,x3);
momentum = rnd.rndm()*momentum;
return;
}
}
}
/// Particle modification. Caller presets defaults to: ( direction = m_direction, momentum = m_energy)
void Geant4IsotropeGenerator::getParticleDirection(int num, ROOT::Math::XYZVector& direction, double& momentum) const {
switch(::toupper(m_distribution[0])) {
case 'C': // cos(theta)
return getParticleDirectionCosTheta(num, direction, momentum);
case 'F': // ffbar: ~ 1 + cos^2(theta)
return getParticleDirectionFFbar(num, direction, momentum);
case 'E': // eta, rapidity, pseudorapidity
case 'P':
case 'R':
return getParticleDirectionEta(num, direction, momentum);
case 'U': // uniform
return getParticleDirectionUniform(num, direction, momentum);
default:
break;
}
except("Unknown distribution densitiy: %s. Cannot generate primaries.",
m_distribution.c_str());
}