Newer
Older
p.first->GetParticleName().c_str(), p.first->GetPDGEncoding(), p.second);
}
else {
printout(ALWAYS,"Geant4Converter",
"+++ LimitSet: Limit %s.%s NOT APPLIED.",ls.name(), pref.c_str());
}
return *this;
}
};
Geant4UserLimits* limits = new Geant4UserLimits(limitset);
g4 = limits;
if ( debugRegions ) {
LimitPrint print(limitset);
print("maxTime", limits->maxTime)
("minEKine", limits->minEKine)
("minRange", limits->minRange)
("maxStepLength", limits->maxStepLength)
("maxTrackLength",limits->maxTrackLength);
}
data().g4Limits[limitset] = g4;
}
return g4;
}
/// Convert the geometry visualisation attributes to the corresponding Geant4 object(s).
void* Geant4Converter::handleVis(const string& /* name */, VisAttr attr) const {
Geant4GeometryInfo& info = data();
G4VisAttributes* g4 = info.g4Vis[attr];
if ( !g4 ) {
int style = attr.lineStyle();
attr.rgb(red, green, blue);
g4 = new G4VisAttributes(attr.visible(), G4Colour(red, green, blue, attr.alpha()));
//g4->SetLineWidth(attr->GetLineWidth());
g4->SetDaughtersInvisible(!attr.showDaughters());
if ( style == VisAttr::SOLID ) {
g4->SetLineStyle(G4VisAttributes::unbroken);
g4->SetForceWireframe(false);
g4->SetForceSolid(true);
}
else if ( style == VisAttr::WIREFRAME || style == VisAttr::DASHED ) {
g4->SetLineStyle(G4VisAttributes::dashed);
g4->SetForceSolid(false);
g4->SetForceWireframe(true);
}
}
return g4;
}
/// Handle the geant 4 specific properties
void Geant4Converter::handleProperties(Detector::Properties& prp) const {
map < string, string > processors;
static int s_idd = 9999999;
for( const auto& [nam, vals] : prp ) {
if ( nam.substr(0, 6) == "geant4" ) {
auto id_it = vals.find("id");
string id = (id_it == vals.end()) ? _toString(++s_idd,"%d") : (*id_it).second;
processors.emplace(id, nam);
for( const auto& p : processors ) {
const Detector::PropertyValues& vals = prp[p.second];
string type = vals.find("type")->second;
string tag = type + "_Geant4_action";
Detector* det = const_cast<Detector*>(&m_detDesc);
long res = PluginService::Create<long>(tag, det, hdlr, &vals);
if ( 0 == res ) {
throw runtime_error("Failed to locate plugin to interprete files of type"
Markus Frank
committed
" \"" + tag + "\" - no factory:" + type);
res = *(long*)res;
if ( res != 1 ) {
throw runtime_error("Failed to invoke the plugin " + tag + " of type " + type);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "+++++ Executed Successfully Geant4 setup module *%s*.", type.c_str());
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Convert the geometry type material into the corresponding Geant4 object(s).
void* Geant4Converter::handleMaterialProperties(TObject* mtx) const {
Geant4GeometryInfo& info = data();
TGDMLMatrix* matrix = (TGDMLMatrix*)mtx;
const char* cptr = ::strstr(matrix->GetName(), GEANT4_TAG_IGNORE);
Geant4GeometryInfo::PropertyVector* g4 = info.g4OpticalProperties[matrix];
if ( 0 != cptr ) { // Check if the property should not be passed to Geant4
printout(INFO,"Geant4MaterialProperties","++ Ignore property %s [%s].",
Markus Frank
committed
matrix->GetName(), matrix->GetTitle());
return nullptr;
}
cptr = ::strstr(matrix->GetTitle(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) { // Check if the property should not be passed to Geant4
printout(INFO,"Geant4MaterialProperties","++ Ignore property %s [%s].",
Markus Frank
committed
matrix->GetName(), matrix->GetTitle());
return nullptr;
}
if ( !g4 ) {
Markus Frank
committed
PrintLevel lvl = debugMaterials ? ALWAYS : outputLevel;
g4 = new Geant4GeometryInfo::PropertyVector();
size_t rows = matrix->GetRows();
g4->name = matrix->GetName();
g4->title = matrix->GetTitle();
g4->bins.reserve(rows);
g4->values.reserve(rows);
for( size_t i=0; i<rows; ++i ) {
g4->bins.emplace_back(matrix->Get(i,0) /* *CLHEP::eV/units::eV */);
g4->values.emplace_back(matrix->Get(i,1));
printout(lvl, "Geant4Converter",
Markus Frank
committed
"++ Successfully converted material property:%s : %s [%ld rows]",
matrix->GetName(), matrix->GetTitle(), rows);
info.g4OpticalProperties[matrix] = g4;
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
}
return g4;
}
static G4OpticalSurfaceFinish geant4_surface_finish(TGeoOpticalSurface::ESurfaceFinish f) {
#define TO_G4_FINISH(x) case TGeoOpticalSurface::kF##x : return x;
switch(f) {
TO_G4_FINISH(polished); // smooth perfectly polished surface
TO_G4_FINISH(polishedfrontpainted); // smooth top-layer (front) paint
TO_G4_FINISH(polishedbackpainted); // same is 'polished' but with a back-paint
TO_G4_FINISH(ground); // rough surface
TO_G4_FINISH(groundfrontpainted); // rough top-layer (front) paint
TO_G4_FINISH(groundbackpainted); // same as 'ground' but with a back-paint
TO_G4_FINISH(polishedlumirrorair); // mechanically polished surface, with lumirror
TO_G4_FINISH(polishedlumirrorglue); // mechanically polished surface, with lumirror & meltmount
TO_G4_FINISH(polishedair); // mechanically polished surface
TO_G4_FINISH(polishedteflonair); // mechanically polished surface, with teflon
TO_G4_FINISH(polishedtioair); // mechanically polished surface, with tio paint
TO_G4_FINISH(polishedtyvekair); // mechanically polished surface, with tyvek
TO_G4_FINISH(polishedvm2000air); // mechanically polished surface, with esr film
TO_G4_FINISH(polishedvm2000glue); // mechanically polished surface, with esr film & meltmount
TO_G4_FINISH(etchedlumirrorair); // chemically etched surface, with lumirror
TO_G4_FINISH(etchedlumirrorglue); // chemically etched surface, with lumirror & meltmount
TO_G4_FINISH(etchedair); // chemically etched surface
TO_G4_FINISH(etchedteflonair); // chemically etched surface, with teflon
TO_G4_FINISH(etchedtioair); // chemically etched surface, with tio paint
TO_G4_FINISH(etchedtyvekair); // chemically etched surface, with tyvek
TO_G4_FINISH(etchedvm2000air); // chemically etched surface, with esr film
TO_G4_FINISH(etchedvm2000glue); // chemically etched surface, with esr film & meltmount
TO_G4_FINISH(groundlumirrorair); // rough-cut surface, with lumirror
TO_G4_FINISH(groundlumirrorglue); // rough-cut surface, with lumirror & meltmount
TO_G4_FINISH(groundair); // rough-cut surface
TO_G4_FINISH(groundteflonair); // rough-cut surface, with teflon
TO_G4_FINISH(groundtioair); // rough-cut surface, with tio paint
TO_G4_FINISH(groundtyvekair); // rough-cut surface, with tyvek
TO_G4_FINISH(groundvm2000air); // rough-cut surface, with esr film
TO_G4_FINISH(groundvm2000glue); // rough-cut surface, with esr film & meltmount
// for DAVIS model
TO_G4_FINISH(Rough_LUT); // rough surface
TO_G4_FINISH(RoughTeflon_LUT); // rough surface wrapped in Teflon tape
TO_G4_FINISH(RoughESR_LUT); // rough surface wrapped with ESR
TO_G4_FINISH(RoughESRGrease_LUT); // rough surface wrapped with ESR and coupled with opical grease
TO_G4_FINISH(Polished_LUT); // polished surface
TO_G4_FINISH(PolishedTeflon_LUT); // polished surface wrapped in Teflon tape
TO_G4_FINISH(PolishedESR_LUT); // polished surface wrapped with ESR
TO_G4_FINISH(PolishedESRGrease_LUT); // polished surface wrapped with ESR and coupled with opical grease
TO_G4_FINISH(Detector_LUT); // polished surface with optical grease
default:
printout(ERROR,"Geant4Surfaces","++ Unknown finish style: %d [%s]. Assume polished!",
int(f), TGeoOpticalSurface::FinishToString(f));
return polished;
}
#undef TO_G4_FINISH
}
static G4SurfaceType geant4_surface_type(TGeoOpticalSurface::ESurfaceType t) {
#define TO_G4_TYPE(x) case TGeoOpticalSurface::kT##x : return x;
switch(t) {
TO_G4_TYPE(dielectric_metal); // dielectric-metal interface
TO_G4_TYPE(dielectric_dielectric); // dielectric-dielectric interface
TO_G4_TYPE(dielectric_LUT); // dielectric-Look-Up-Table interface
TO_G4_TYPE(dielectric_LUTDAVIS); // dielectric-Look-Up-Table DAVIS interface
TO_G4_TYPE(dielectric_dichroic); // dichroic filter interface
TO_G4_TYPE(firsov); // for Firsov Process
TO_G4_TYPE(x_ray); // for x-ray mirror process
default:
printout(ERROR,"Geant4Surfaces","++ Unknown surface type: %d [%s]. Assume dielectric_metal!",
int(t), TGeoOpticalSurface::TypeToString(t));
return dielectric_metal;
}
#undef TO_G4_TYPE
}
static G4OpticalSurfaceModel geant4_surface_model(TGeoOpticalSurface::ESurfaceModel surfMod) {
#define TO_G4_MODEL(x) case TGeoOpticalSurface::kM##x : return x;
TO_G4_MODEL(glisur); // original GEANT3 model
TO_G4_MODEL(unified); // UNIFIED model
TO_G4_MODEL(LUT); // Look-Up-Table model
TO_G4_MODEL(DAVIS); // DAVIS model
TO_G4_MODEL(dichroic); // dichroic filter
default:
printout(ERROR,"Geant4Surfaces","++ Unknown surface model: %d [%s]. Assume glisur!",
int(surfMod), TGeoOpticalSurface::ModelToString(surfMod));
return glisur;
}
#undef TO_G4_MODEL
}
/// Convert the optical surface to Geant4
void* Geant4Converter::handleOpticalSurface(TObject* surface) const {
TGeoOpticalSurface* optSurf = (TGeoOpticalSurface*)surface;
Geant4GeometryInfo& info = data();
G4OpticalSurface* g4 = info.g4OpticalSurfaces[optSurf];
G4SurfaceType type = geant4_surface_type(optSurf->GetType());
G4OpticalSurfaceModel model = geant4_surface_model(optSurf->GetModel());
G4OpticalSurfaceFinish finish = geant4_surface_finish(optSurf->GetFinish());
g4 = new G4OpticalSurface(optSurf->GetName(), model, finish, type, optSurf->GetValue());
g4->SetSigmaAlpha(optSurf->GetSigmaAlpha());
// not implemented: g4->SetPolish(s->GetPolish());
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created OpticalSurface: %-18s type:%s model:%s finish:%s",
optSurf->GetName(),
TGeoOpticalSurface::TypeToString(optSurf->GetType()),
TGeoOpticalSurface::ModelToString(optSurf->GetModel()),
TGeoOpticalSurface::FinishToString(optSurf->GetFinish()));
G4MaterialPropertiesTable* tab = 0;
Markus Frank
committed
for(TObject* obj = it.Next(); obj; obj = it.Next()) {
Markus Frank
committed
string exc_str;
TNamed* named = (TNamed*)obj;
TGDMLMatrix* matrix = info.manager->GetGDMLMatrix(named->GetTitle());
const char* cptr = ::strstr(matrix->GetName(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) // Check if the property should not be passed to Geant4
Markus Frank
committed
continue;
if ( 0 == tab ) {
tab = new G4MaterialPropertiesTable();
g4->SetMaterialPropertiesTable(tab);
}
Geant4GeometryInfo::PropertyVector* v =
(Geant4GeometryInfo::PropertyVector*)handleMaterialProperties(matrix);
if ( !v ) { // Error!
except("Geant4OpticalSurface","++ Failed to convert opt.surface %s. Property table %s is not defined!",
optSurf->GetName(), named->GetTitle());
}
Markus Frank
committed
int idx = -1;
try {
idx = tab->GetPropertyIndex(named->GetName());
}
catch(const std::exception& e) {
exc_str = e.what();
idx = -1;
}
catch(...) {
idx = -1;
}
Markus Frank
committed
printout(ERROR, "Geant4Converter",
"++ UNKNOWN Geant4 Property: %-20s %s [IGNORED]",
exc_str.c_str(), named->GetName());
// We need to convert the property from TGeo units to Geant4 units
auto conv = g4PropertyConversion(idx);
vector<double> bins(v->bins), vals(v->values);
for(size_t i=0, count=v->bins.size(); i<count; ++i)
bins[i] *= conv.first, vals[i] *= conv.second;
G4MaterialPropertyVector* vec = new G4MaterialPropertyVector(&bins[0], &vals[0], bins.size());
tab->AddProperty(named->GetName(), vec);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Property: %-20s [%ld x %ld] --> %s",
named->GetName(), matrix->GetRows(), matrix->GetCols(), named->GetTitle());
for(size_t i=0, count=v->bins.size(); i<count; ++i)
printout(debugSurfaces ? ALWAYS : DEBUG, named->GetName(),
" Geant4: %8.3g [MeV] TGeo: %8.3g [GeV] Conversion: %8.3g",
bins[i], v->bins[i], conv.first);
}
return g4;
}
/// Convert the skin surface to Geant4
void* Geant4Converter::handleSkinSurface(TObject* surface) const {
TGeoSkinSurface* surf = (TGeoSkinSurface*)surface;
Geant4GeometryInfo& info = data();
G4LogicalSkinSurface* g4 = info.g4SkinSurfaces[surf];
G4OpticalSurface* optSurf = info.g4OpticalSurfaces[OpticalSurface(surf->GetSurface())];
G4LogicalVolume* v = info.g4Volumes[surf->GetVolume()];
g4 = new G4LogicalSkinSurface(surf->GetName(), v, optSurf);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created SkinSurface: %-18s optical:%s",
surf->GetName(), surf->GetSurface()->GetName());
info.g4SkinSurfaces[surf] = g4;
}
return g4;
}
/// Convert the border surface to Geant4
void* Geant4Converter::handleBorderSurface(TObject* surface) const {
TGeoBorderSurface* surf = (TGeoBorderSurface*)surface;
Geant4GeometryInfo& info = data();
G4LogicalBorderSurface* g4 = info.g4BorderSurfaces[surf];
G4OpticalSurface* optSurf = info.g4OpticalSurfaces[OpticalSurface(surf->GetSurface())];
G4VPhysicalVolume* n1 = info.g4Placements[surf->GetNode1()];
G4VPhysicalVolume* n2 = info.g4Placements[surf->GetNode2()];
g4 = new G4LogicalBorderSurface(surf->GetName(), n1, n2, optSurf);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created BorderSurface: %-18s optical:%s",
surf->GetName(), surf->GetSurface()->GetName());
info.g4BorderSurfaces[surf] = g4;
}
return g4;
}
#endif
/// Convert the geometry type SensitiveDetector into the corresponding Geant4 object(s).
Markus Frank
committed
void Geant4Converter::printSensitive(SensitiveDetector sens_det, const set<const TGeoVolume*>& /* volumes */) const {
Geant4GeometryInfo& info = data();
set<const TGeoVolume*>& volset = info.sensitives[sens_det];
SensitiveDetector sd = sens_det;
Markus Frank
committed
stringstream str;
printout(INFO, "Geant4Converter", "++ SensitiveDetector: %-18s %-20s Hits:%-16s", sd.name(), ("[" + sd.type() + "]").c_str(),
Markus Frank
committed
sd.hitsCollection().c_str());
str << " | " << "Cutoff:" << setw(6) << left << sd.energyCutoff() << setw(5) << right << volset.size()
<< " volumes ";
if (sd.region().isValid())
str << " Region:" << setw(12) << left << sd.region().name();
if (sd.limits().isValid())
str << " Limits:" << setw(12) << left << sd.limits().name();
Markus Frank
committed
str << ".";
printout(INFO, "Geant4Converter", str.str().c_str());
for (const auto i : volset ) {
map<Volume, G4LogicalVolume*>::iterator v = info.g4Volumes.find(i);
Markus Frank
committed
str.str("");
str << " | " << "Volume:" << setw(24) << left << vol->GetName() << " "
<< vol->GetNoDaughters() << " daughters.";
Markus Frank
committed
printout(INFO, "Geant4Converter", str.str().c_str());
Markus Frank
committed
string printSolid(G4VSolid* sol) {
stringstream str;
if (typeid(*sol) == typeid(G4Box)) {
const G4Box* b = (G4Box*) sol;
Markus Frank
committed
str << "++ Box: x=" << b->GetXHalfLength() << " y=" << b->GetYHalfLength() << " z=" << b->GetZHalfLength();
else if (typeid(*sol) == typeid(G4Tubs)) {
const G4Tubs* t = (const G4Tubs*) sol;
str << " Tubs: Ri=" << t->GetInnerRadius() << " Ra=" << t->GetOuterRadius() << " z/2=" << t->GetZHalfLength() << " Phi="
<< t->GetStartPhiAngle() << "..." << t->GetDeltaPhiAngle();
Markus Frank
committed
return str.str();
}
/// Print G4 placement
void* Geant4Converter::printPlacement(const string& name, const TGeoNode* node) const {
Geant4GeometryInfo& info = data();
G4VPhysicalVolume* g4 = info.g4Placements[node];
G4LogicalVolume* vol = info.g4Volumes[node->GetVolume()];
G4LogicalVolume* mot = info.g4Volumes[node->GetMotherVolume()];
G4VSolid* sol = vol->GetSolid();
G4ThreeVector tr = g4->GetObjectTranslation();
G4VSensitiveDetector* sd = vol->GetSensitiveDetector();
Markus Frank
committed
stringstream str;
str << "G4Cnv::placement: + " << name << " No:" << node->GetNumber() << " Vol:" << vol->GetName() << " Solid:"
<< sol->GetName();
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
Markus Frank
committed
str.str("");
str << " |" << " Loc: x=" << tr.x() << " y=" << tr.y() << " z=" << tr.z();
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
printout(outputLevel, "G4Placement", printSolid(sol).c_str());
Markus Frank
committed
str.str("");
str << " |" << " Ndau:" << vol->GetNoDaughters() << " physvols." << " Mat:" << vol->GetMaterial()->GetName()
<< " Mother:" << (char*) (mot ? mot->GetName().c_str() : "---");
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
Markus Frank
committed
str.str("");
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
namespace {
template <typename O, typename C, typename F> void handleRefs(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
//(o->*pmf)((*i)->GetName(), *i);
(o->*pmf)("", *i);
}
template <typename O, typename C, typename F> void handle(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
(o->*pmf)((*i)->GetName(), *i);
}
template <typename O, typename F> void handleArray(const O* o, const TObjArray* c, F pmf) {
TObjArrayIter arr(c);
for(TObject* i = arr.Next(); i; i=arr.Next())
(o->*pmf)(i);
}
template <typename O, typename C, typename F> void handleMap(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i)
(o->*pmf)((*i).first, (*i).second);
}
template <typename O, typename C, typename F> void handleRMap(const O* o, const C& c, F pmf) {
for (typename C::const_reverse_iterator i = c.rbegin(); i != c.rend(); ++i) {
//cout << "Handle RMAP [ " << (*i).first << " ]" << endl;
handle(o, (*i).second, pmf);
}
template <typename O, typename C, typename F> void handleRMap_(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
const auto& cc = (*i).second;
for (const auto& j : cc) {
Markus Frank
committed
(o->*pmf)(j);
Markus Frank
committed
Geant4Converter& Geant4Converter::create(DetElement top) {
Geant4GeometryInfo& geo = this->init();
geo.manager = &wrld.detectorDescription().manager();
Markus Frank
committed
collect(top, geo);
Markus Frank
committed
checkOverlaps = false;
// We do not have to handle defines etc.
// All positions and the like are not really named.
// Hence, start creating the G4 objects for materials, solids and log volumes.
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
handleArray(this, geo.manager->GetListOfGDMLMatrices(), &Geant4Converter::handleMaterialProperties);
handleArray(this, geo.manager->GetListOfOpticalSurfaces(), &Geant4Converter::handleOpticalSurface);
#endif
handle(this, geo.volumes, &Geant4Converter::collectVolume);
handle(this, geo.solids, &Geant4Converter::handleSolid);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld solids.", geo.solids.size());
handleRefs(this, geo.vis, &Geant4Converter::handleVis);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld visualization attributes.", geo.vis.size());
handleMap(this, geo.limits, &Geant4Converter::handleLimitSet);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld limit sets.", geo.limits.size());
handleMap(this, geo.regions, &Geant4Converter::handleRegion);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld regions.", geo.regions.size());
handle(this, geo.volumes, &Geant4Converter::handleVolume);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld volumes.", geo.volumes.size());
handleRMap(this, *m_data, &Geant4Converter::handleAssembly);
// Now place all this stuff appropriately
handleRMap(this, *m_data, &Geant4Converter::handlePlacement);
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Handle concrete surfaces
handleArray(this, geo.manager->GetListOfSkinSurfaces(), &Geant4Converter::handleSkinSurface);
handleArray(this, geo.manager->GetListOfBorderSurfaces(), &Geant4Converter::handleBorderSurface);
#endif
//==================== Fields
Markus Frank
committed
if ( printSensitives ) {
handleMap(this, geo.sensitives, &Geant4Converter::printSensitive);
}
if ( printPlacements ) {
handleRMap(this, *m_data, &Geant4Converter::printPlacement);
}
geo.setWorld(top.placement().ptr());
geo.valid = true;
printout(INFO, "Geant4Converter", "+++ Successfully converted geometry to Geant4.");
Markus Frank
committed
return *this;