Newer
Older
//==========================================================================
// AIDA Detector description implementation
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
// All rights reserved.
//
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
//
// Author : M.Frank
//
//==========================================================================
// Framework include files
#include "DD4hep/Shapes.h"
#include "DD4hep/Printout.h"
#include "DD4hep/DD4hepUnits.h"
#include "DD4hep/detail/ShapesInterna.h"
#include "Geant4ShapeConverter.h"
// ROOT includes
#include "TClass.h"
#include "TGeoMatrix.h"
#include "TGeoBoolNode.h"
#include "TGeoScaledShape.h"
// Geant4 include files
#include "G4Box.hh"
#include "G4Trd.hh"
#include "G4Tubs.hh"
#include "G4Trap.hh"
#include "G4Cons.hh"
#include "G4Hype.hh"
#include "G4Torus.hh"
#include "G4Sphere.hh"
#include "G4CutTubs.hh"
#include "G4Polycone.hh"
#include "G4Polyhedra.hh"
#include "G4Ellipsoid.hh"
#include "G4Paraboloid.hh"
#include "G4TwistedTubs.hh"
#include "G4GenericTrap.hh"
#include "G4ExtrudedSolid.hh"
#include "G4EllipticalTube.hh"
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// C/C++ include files
using namespace std;
using namespace dd4hep::detail;
namespace units = dd4hep;
/// Namespace for the AIDA detector description toolkit
namespace dd4hep {
/// Namespace for the Geant4 based simulation part of the AIDA detector description toolkit
namespace sim {
static const double CM_2_MM = (CLHEP::centimeter/dd4hep::centimeter);
/// Convert a specific TGeo shape into the geant4 equivalent
template <typename T> G4VSolid* convertShape(const TGeoShape* shape) {
if ( shape ) {
dd4hep::except("convertShape","Unsupported shape: %s",shape->IsA()->GetName());
}
dd4hep::except("convertShape","Invalid shape conversion requested.");
return 0;
}
template <> G4VSolid* convertShape<TGeoShapeAssembly>(const TGeoShape* /* shape */) {
return 0;
}
template <> G4VSolid* convertShape<TGeoBBox>(const TGeoShape* shape) {
const TGeoBBox* sh = (const TGeoBBox*) shape;
return new G4Box(sh->GetName(), sh->GetDX() * CM_2_MM, sh->GetDY() * CM_2_MM, sh->GetDZ() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoTube>(const TGeoShape* shape) {
const TGeoTube* sh = (const TGeoTube*) shape;
return new G4Tubs(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetDz() * CM_2_MM, 0, 2. * M_PI);
}
template <> G4VSolid* convertShape<TGeoTubeSeg>(const TGeoShape* shape) {
const TGeoTubeSeg* sh = (const TGeoTubeSeg*) shape;
return new G4Tubs(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetDz() * CM_2_MM,
sh->GetPhi1() * DEGREE_2_RAD, (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoCtub>(const TGeoShape* shape) {
const TGeoCtub* sh = (const TGeoCtub*) shape;
const Double_t* ln = sh->GetNlow();
const Double_t* hn = sh->GetNhigh();
G4ThreeVector lowNorm (ln[0], ln[1], ln[2]);
G4ThreeVector highNorm(hn[0], hn[1], hn[2]);
return new G4CutTubs(sh->GetName(),
sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetDz() * CM_2_MM,
sh->GetPhi1() * DEGREE_2_RAD, (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD, lowNorm, highNorm);
}
template <> G4VSolid* convertShape<TGeoEltu>(const TGeoShape* shape) {
const TGeoEltu* sh = (const TGeoEltu*) shape;
return new G4EllipticalTube(sh->GetName(),sh->GetA() * CM_2_MM, sh->GetB() * CM_2_MM, sh->GetDz() * CM_2_MM);
}
template <> G4VSolid* convertShape<TwistedTubeObject>(const TGeoShape* shape) {
const TwistedTubeObject* sh = (const TwistedTubeObject*) shape;
return new G4TwistedTubs(sh->GetName(),sh->GetPhiTwist() * DEGREE_2_RAD,
sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM,
sh->GetNegativeEndZ() * CM_2_MM, sh->GetPositiveEndZ() * CM_2_MM,
sh->GetNsegments(), (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoTrd1>(const TGeoShape* shape) {
const TGeoTrd1* sh = (const TGeoTrd1*) shape;
return new G4Trd(sh->GetName(),
sh->GetDx1() * CM_2_MM, sh->GetDx2() * CM_2_MM,
sh->GetDy() * CM_2_MM, sh->GetDy() * CM_2_MM,
sh->GetDz() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoTrd2>(const TGeoShape* shape) {
const TGeoTrd2* sh = (const TGeoTrd2*) shape;
return new G4Trd(sh->GetName(),
sh->GetDx1() * CM_2_MM, sh->GetDx2() * CM_2_MM,
sh->GetDy1() * CM_2_MM, sh->GetDy2() * CM_2_MM,
sh->GetDz() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoHype>(const TGeoShape* shape) {
const TGeoHype* sh = (const TGeoHype*) shape;
return new G4Hype(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM,
sh->GetStIn() * DEGREE_2_RAD, sh->GetStOut() * DEGREE_2_RAD,
sh->GetDz() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoArb8>(const TGeoShape* shape) {
vector<G4TwoVector> vertices;
TGeoArb8* sh = (TGeoArb8*) shape;
Double_t* vtx_xy = sh->GetVertices();
for ( size_t i=0; i<8; ++i, vtx_xy +=2 )
vertices.emplace_back(vtx_xy[0] * CM_2_MM, vtx_xy[1] * CM_2_MM);
return new G4GenericTrap(sh->GetName(), sh->GetDz() * CM_2_MM, vertices);
}
template <> G4VSolid* convertShape<TGeoXtru>(const TGeoShape* shape) {
const TGeoXtru* sh = (const TGeoXtru*) shape;
size_t nz = sh->GetNz();
vector<G4ExtrudedSolid::ZSection> z;
vector<G4TwoVector> polygon;
z.reserve(nz);
polygon.reserve(nz);
for(size_t i=0; i<nz; ++i) {
z.emplace_back(G4ExtrudedSolid::ZSection(sh->GetZ(i) * CM_2_MM, {sh->GetXOffset(i), sh->GetYOffset(i)}, sh->GetScale(i)));
polygon.emplace_back(sh->GetX(i) * CM_2_MM,sh->GetY(i) * CM_2_MM);
}
return new G4ExtrudedSolid(sh->GetName(), polygon, z);
}
template <> G4VSolid* convertShape<TGeoPgon>(const TGeoShape* shape) {
const TGeoPgon* sh = (const TGeoPgon*) shape;
vector<double> rmin, rmax, z;
for (Int_t i = 0; i < sh->GetNz(); ++i) {
rmin.emplace_back(sh->GetRmin(i) * CM_2_MM);
rmax.emplace_back(sh->GetRmax(i) * CM_2_MM);
z.emplace_back(sh->GetZ(i) * CM_2_MM);
}
return new G4Polyhedra(sh->GetName(), sh->GetPhi1() * DEGREE_2_RAD, sh->GetDphi() * DEGREE_2_RAD,
sh->GetNedges(), sh->GetNz(), &z[0], &rmin[0], &rmax[0]);
}
template <> G4VSolid* convertShape<TGeoPcon>(const TGeoShape* shape) {
const TGeoPcon* sh = (const TGeoPcon*) shape;
vector<double> rmin, rmax, z;
for (Int_t i = 0; i < sh->GetNz(); ++i) {
rmin.emplace_back(sh->GetRmin(i) * CM_2_MM);
rmax.emplace_back(sh->GetRmax(i) * CM_2_MM);
z.emplace_back(sh->GetZ(i) * CM_2_MM);
}
return new G4Polycone(sh->GetName(), sh->GetPhi1() * DEGREE_2_RAD, sh->GetDphi() * DEGREE_2_RAD,
sh->GetNz(), &z[0], &rmin[0], &rmax[0]);
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
}
template <> G4VSolid* convertShape<TGeoCone>(const TGeoShape* shape) {
const TGeoCone* sh = (const TGeoCone*) shape;
return new G4Cons(sh->GetName(), sh->GetRmin1() * CM_2_MM, sh->GetRmax1() * CM_2_MM, sh->GetRmin2() * CM_2_MM,
sh->GetRmax2() * CM_2_MM, sh->GetDz() * CM_2_MM, 0.0, 2.*M_PI);
}
template <> G4VSolid* convertShape<TGeoConeSeg>(const TGeoShape* shape) {
const TGeoConeSeg* sh = (const TGeoConeSeg*) shape;
return new G4Cons(sh->GetName(), sh->GetRmin1() * CM_2_MM, sh->GetRmax1() * CM_2_MM,
sh->GetRmin2() * CM_2_MM, sh->GetRmax2() * CM_2_MM,
sh->GetDz() * CM_2_MM,
sh->GetPhi1() * DEGREE_2_RAD, (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoParaboloid>(const TGeoShape* shape) {
const TGeoParaboloid* sh = (const TGeoParaboloid*) shape;
return new G4Paraboloid(sh->GetName(), sh->GetDz() * CM_2_MM, sh->GetRlo() * CM_2_MM, sh->GetRhi() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoSphere>(const TGeoShape* shape) {
const TGeoSphere* sh = (const TGeoSphere*) shape;
return new G4Sphere(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetPhi1() * DEGREE_2_RAD,
sh->GetPhi2() * DEGREE_2_RAD, sh->GetTheta1() * DEGREE_2_RAD, sh->GetTheta2() * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoTorus>(const TGeoShape* shape) {
const TGeoTorus* sh = (const TGeoTorus*) shape;
return new G4Torus(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetR() * CM_2_MM,
sh->GetPhi1() * DEGREE_2_RAD, sh->GetDphi() * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoTrap>(const TGeoShape* shape) {
const TGeoTrap* sh = (const TGeoTrap*) shape;
return new G4Trap(sh->GetName(), sh->GetDz() * CM_2_MM, sh->GetTheta() * DEGREE_2_RAD, sh->GetPhi() * DEGREE_2_RAD,
sh->GetH1() * CM_2_MM, sh->GetBl1() * CM_2_MM, sh->GetTl1() * CM_2_MM, sh->GetAlpha1() * DEGREE_2_RAD,
sh->GetH2() * CM_2_MM, sh->GetBl2() * CM_2_MM, sh->GetTl2() * CM_2_MM, sh->GetAlpha2() * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<G4GenericTrap>(const TGeoShape* shape) {
vector<G4TwoVector> vertices;
TGeoTrap* sh = (TGeoTrap*) shape;
Double_t* vtx_xy = sh->GetVertices();
for ( size_t i=0; i<8; ++i, vtx_xy +=2 )
vertices.emplace_back(vtx_xy[0] * CM_2_MM, vtx_xy[1] * CM_2_MM);
return new G4GenericTrap(sh->GetName(), sh->GetDz() * CM_2_MM, vertices);
}
} // End namespace sim
} // End namespace dd4hep
#if ROOT_VERSION_CODE > ROOT_VERSION(6,21,0)
#include "G4TessellatedSolid.hh"
#include "G4TriangularFacet.hh"
#include "G4QuadrangularFacet.hh"
/// Namespace for the AIDA detector description toolkit
namespace dd4hep {
/// Namespace for the Geant4 based simulation part of the AIDA detector description toolkit
namespace sim {
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
template <> G4VSolid* convertShape<TGeoTessellated>(const TGeoShape* shape) {
TGeoTessellated* sh = (TGeoTessellated*) shape;
G4TessellatedSolid* g4 = new G4TessellatedSolid(sh->GetName());
int num_facet = sh->GetNfacets();
printout(DEBUG,"TessellatedSolid","+++ %s> Converting %d facets", sh->GetName(), num_facet);
for(int i=0; i<num_facet; ++i) {
const TGeoFacet& facet = sh->GetFacet(i);
int nv = facet.GetNvert();
const auto& v0 = sh->GetVertex(facet.GetVertexIndex(0));
const auto& v1 = sh->GetVertex(facet.GetVertexIndex(1));
const auto& v2 = sh->GetVertex(facet.GetVertexIndex(2));
G4VFacet* g4f = 0;
if ( nv == 3 ) {
g4f = new G4TriangularFacet(G4ThreeVector(v0.x() * CM_2_MM, v0.y() * CM_2_MM, v0.z() * CM_2_MM),
G4ThreeVector(v1.x() * CM_2_MM, v1.y() * CM_2_MM, v1.z() * CM_2_MM),
G4ThreeVector(v2.x() * CM_2_MM, v2.y() * CM_2_MM, v2.z() * CM_2_MM),
ABSOLUTE);
}
else if ( nv == 4 ) {
const auto& v3 = sh->GetVertex(facet.GetVertexIndex(3));
g4f = new G4QuadrangularFacet(G4ThreeVector(v0.x() * CM_2_MM, v0.y() * CM_2_MM, v0.z() * CM_2_MM),
G4ThreeVector(v1.x() * CM_2_MM, v1.y() * CM_2_MM, v1.z() * CM_2_MM),
G4ThreeVector(v2.x() * CM_2_MM, v2.y() * CM_2_MM, v2.z() * CM_2_MM),
G4ThreeVector(v3.x() * CM_2_MM, v3.y() * CM_2_MM, v3.z() * CM_2_MM),
ABSOLUTE);
}
else {
except("TGeoTessellated", "Tessellated shape [%s] has facet with wrong number of vertices: %d",
sh->GetName(), nv);
}
g4->AddFacet(g4f);
}
return g4;
}
} // End namespace sim
} // End namespace dd4hep