Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// $Id: Geant4Converter.cpp 603 2013-06-13 21:15:14Z markus.frank $
//====================================================================
// AIDA Detector description implementation for LCD
//--------------------------------------------------------------------
//
// Author : M.Frank
//
//====================================================================
// Framework include files
#define DDG4_MAKE_INSTANTIATIONS
#include "DD4hep/LCDD.h"
#include "DD4hep/Printout.h"
#include "DDG4/Geant4Particle.h"
#include "DDG4/Geant4HitCollection.h"
#include "DDG4/Geant4DataConversion.h"
#include "DDG4/Geant4MonteCarloTruth.h"
// LCIO includes
#include "IMPL/LCCollectionVec.h"
//
#include "IMPL/ClusterImpl.h"
#include "IMPL/SimTrackerHitImpl.h"
#include "IMPL/SimCalorimeterHitImpl.h"
#include "IMPL/MCParticleImpl.h"
#include "UTIL/ILDConf.h"
// Geant4 include files
#include "G4ParticleDefinition.hh"
#include "G4VProcess.hh"
using namespace std;
/*
* DD4hep namespace declaration
*/
namespace DD4hep {
typedef ReferenceBitMask<const int> PropertyMask;
/*
* Simulation namespace declaration
*/
namespace Simulation {
// Forward declarations
typedef Geant4Particle Particle;
/// Data conversion interface for MC particles to LCIO format
/**
* @author M.Frank
* @version 1.0
*/
template <> lcio::LCCollectionVec*
Geant4DataConversion<lcio::LCCollectionVec,
pair<const Geant4Context*,const Geant4ParticleMap*>,
Geant4ParticleMap>::operator()(const arg_t& args) const {
typedef MCParticleImpl MYParticleImpl;
typedef Geant4Conversion<output_t,pair<arg_t::first_type,arg_t::second_type> > _C;
typedef Geant4ParticleMap::ParticleMap ParticleMap;
const ParticleMap& pm = args.second->particleMap;
size_t nparts = pm.size();
lcio::LCCollectionVec* lc_coll = new lcio::LCCollectionVec(lcio::LCIO::MCPARTICLE);
lc_coll->reserve(nparts);
if ( nparts > 0 ) {
size_t cnt = 0;
map<int,int> p_ids;
vector<const Particle*> p_part(pm.size(),0);
vector<MYParticleImpl*> p_lcio(pm.size(),0);
// First create the particles
for(ParticleMap::const_iterator i=pm.begin(); i!=pm.end();++i, ++cnt) {
int id = (*i).first;
const Particle* p = (*i).second;
PropertyMask mask(p->status);
const G4ParticleDefinition* def = p->definition;
MYParticleImpl* q = (MYParticleImpl*)new lcio::MCParticleImpl();
q->setPDG(p->pdgID);
float ps_fa[3] = { p->psx/GeV, p->psy/GeV, p->psz/GeV } ;
q->setMomentum( ps_fa );
double vs_fa[3] = { p->vsx/mm, p->vsy/mm, p->vsz/mm } ;
q->setVertex( vs_fa );
double ve_fa[3] = { p->vex/mm, p->vey/mm, p->vez/mm } ;
q->setEndpoint( ve_fa );
//q->setMomentum(&p->psx);
//q->setVertex(&p->vsx);
//q->setEndpoint(&p->vex);
q->setTime(p->time/ns);
q->setMass(p->mass/GeV);
q->setCharge(def ? def->GetPDGCharge() : 0); // Charge(e+) = 1 !
// Set generator status
//if ( mask.isSet(G4PARTICLE_GEN_EMPTY) )
q->setGeneratorStatus(0);
if ( mask.isSet(G4PARTICLE_GEN_STABLE) ) q->setGeneratorStatus(1);
else if ( mask.isSet(G4PARTICLE_GEN_DECAYED) ) q->setGeneratorStatus(2);
else if ( mask.isSet(G4PARTICLE_GEN_DOCUMENTATION) ) q->setGeneratorStatus(3);
// Set simulation status
q->setCreatedInSimulation( mask.isSet(G4PARTICLE_SIM_CREATED) );
q->setBackscatter( mask.isSet(G4PARTICLE_SIM_BACKSCATTER) );
q->setVertexIsNotEndpointOfParent( mask.isSet(G4PARTICLE_SIM_PARENT_RADIATED) );
q->setDecayedInTracker( mask.isSet(G4PARTICLE_SIM_DECAY_TRACKER) );
q->setDecayedInCalorimeter( mask.isSet(G4PARTICLE_SIM_DECAY_CALO) );
q->setHasLeftDetector( mask.isSet(G4PARTICLE_SIM_LEFT_DETECTOR) );
q->setStopped( mask.isSet(G4PARTICLE_SIM_STOPPED) );
q->setOverlay( false );
//fg: if simstatus !=0 we have to set the generator status to 0:
if( q->getSimulatorStatus() != 0 )
q->setGeneratorStatus( 0 ) ;
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
q->setSpin(p->spin);
q->setColorFlow(p->colorFlow);
lc_coll->addElement(q);
p_ids[id] = cnt;
p_part[cnt] = p;
p_lcio[cnt] = q;
}
// Now establish parent-daughter relationships
for(size_t i=0, n=p_ids.size(); i<n; ++i) {
map<int,int>::iterator k;
const Particle* p = p_part[i];
MYParticleImpl* q = p_lcio[i];
const Particle::Particles& dau = p->daughters;
for(Particle::Particles::const_iterator j=dau.begin(); j!=dau.end(); ++j) {
int idau = *j;
if ( (k=p_ids.find(idau)) == p_ids.end() ) { // Error!!!
printout(FATAL,"Geant4Conversion","+++ Particle %d: FAILED to find daughter with ID:%d",p->id,idau);
continue;
}
int iqdau = (*k).second;
MYParticleImpl* qdau = p_lcio[iqdau];
qdau->addParent(q);
}
const Particle::Particles& par = p->parents;
for(Particle::Particles::const_iterator j=par.begin(); j!=par.end(); ++j) {
int ipar = *j; // A parent ID iof -1 means NO parent, because a base of 0 is perfectly leagal!
if ( ipar>=0 && (k=p_ids.find(ipar)) == p_ids.end() ) { // Error!!!
printout(FATAL,"Geant4Conversion","+++ Particle %d: FAILED to find parent with ID:%d",p->id,ipar);
continue;
}
int iqpar = (*k).second;
MYParticleImpl* qpar = p_lcio[iqpar];
q->addParent(qpar);
}
}
}
return lc_coll;
}
typedef pair<const Geant4Context*,const Geant4ParticleMap*> CONVERSION_ARGS;
template class Geant4Conversion<lcio::LCCollectionVec,CONVERSION_ARGS>;
DECLARE_GEANT4_HITCONVERTER(lcio::LCCollectionVec,CONVERSION_ARGS,Geant4ParticleMap)
} // End namespace Simulation
} // End namespace DD4hep