Newer
Older
// $Id: Geant4Converter.cpp 603 2013-06-13 21:15:14Z markus.frank $
//====================================================================
// AIDA Detector description implementation for LCD
//--------------------------------------------------------------------
//
// Author : M.Frank
//
//====================================================================
// Framework include files
#include "DD4hep/Printout.h"
#include "DDG4/ComponentProperties_inl.h"
// C/C++ include files
#include <stdexcept>
#include <cstring>
using namespace std;
using namespace DD4hep;
/// Default constructor
PropertyGrammar::PropertyGrammar() {
}
/// Default destructor
PropertyGrammar::~PropertyGrammar() {
}
/// Error callback on invalid conversion
void PropertyGrammar::invalidConversion(const string& value, const type_info& to) {
string to_name = typeinfoName(to);
throw unrelated_value_error(to,
"The Property data conversion of '" + value + "' to type " + to_name + " is not defined.");
}
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/// Error callback on invalid conversion
void PropertyGrammar::invalidConversion(const type_info& from, const type_info& to) {
string to_name = typeinfoName(to);
string from_name = typeinfoName(from);
throw unrelated_type_error(from, to,
"The Property data conversion from type " + from_name + " to " + to_name + " is not implemented.");
}
/// Default constructor
Property::Property()
: m_par(0), m_hdl(0) {
}
/// Copy constructor
Property::Property(const Property& property)
: m_par(property.m_par), m_hdl(property.m_hdl) {
}
/// Assignment operator
Property& Property::operator=(const Property& property) {
m_par = property.m_par;
m_hdl = property.m_hdl;
return *this;
}
/// Property type name
string Property::type(const Property& property) {
return type(property.grammar().type());
}
/// Property type name
string Property::type(const type_info& typ) {
return typeinfoName(typ);
}
/// Property type name
string Property::type() const {
return Property::type(grammar().type());
}
const PropertyGrammar& Property::grammar() const {
if (m_hdl)
return *m_hdl;
throw runtime_error("Attempt to access property grammar from invalid object.");
}
/// Conversion to string value
string Property::str() const {
if (m_hdl && m_par ) {
return m_hdl->str(m_par);
}
throw runtime_error("Attempt to access property grammar from invalid object.");
}
/// Conversion from string value
Property& Property::str(const std::string& input) {
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
m_hdl->fromString(m_par,input);
return *this;
}
throw runtime_error("Attempt to access property grammar from invalid object.");
}
/// Assignment operator / set new balue
//Property& Property::operator=(const string& val) {
// this->set<string>(val);
// return *this;
//}
/// Assignment operator / set new balue
Property& Property::operator=(const char* val) {
if (val) {
this->set < string > (val);
return *this;
}
throw runtime_error("Attempt to set invalid string to property!");
}
/// Default constructor
PropertyManager::PropertyManager() {
}
/// Default destructor
PropertyManager::~PropertyManager() {
m_properties.clear();
}
/// Check for existence
bool PropertyManager::exists(const std::string& name) const {
Properties::const_iterator i = m_properties.find(name);
return i != m_properties.end();
}
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/// Verify that this property does not exist (throw exception if the name was found)
void PropertyManager::verifyNonExistence(const string& name) const {
Properties::const_iterator i = m_properties.find(name);
if (i == m_properties.end())
return;
throw runtime_error("The property:" + name + " already exists for this component.");
}
/// Verify that this property exists (throw exception if the name was not found)
PropertyManager::Properties::const_iterator PropertyManager::verifyExistence(const string& name) const {
Properties::const_iterator i = m_properties.find(name);
if (i != m_properties.end())
return i;
throw runtime_error("PropertyManager: Unknown property:" + name);
}
/// Verify that this property exists (throw exception if the name was not found)
PropertyManager::Properties::iterator PropertyManager::verifyExistence(const string& name) {
Properties::iterator i = m_properties.find(name);
if (i != m_properties.end())
return i;
throw runtime_error("PropertyManager: Unknown property:" + name);
}
/// Access property by name (CONST)
Property& PropertyManager::property(const string& name) {
return (*verifyExistence(name)).second;
}
/// Access property by name
const Property& PropertyManager::property(const string& name) const {
return (*verifyExistence(name)).second;
}
/// Access property by name
Property& PropertyManager::operator[](const string& name) {
return (*verifyExistence(name)).second;
}
/// Access property by name
const Property& PropertyManager::operator[](const string& name) const {
return (*verifyExistence(name)).second;
}
/// Add a new property
void PropertyManager::add(const string& name, const Property& property) {
verifyNonExistence(name);
m_properties.insert(make_pair(name, property));
}
/// Bulk set of all properties
void PropertyManager::set(const string& component_name, PropertyConfigurator& cfg) {
for (Properties::iterator i = m_properties.begin(); i != m_properties.end(); ++i) {
Property& p = (*i).second;
cfg.set(p.grammar(), component_name, (*i).first, p.ptr());
}
}
/// Dump string values
void PropertyManager::dump() const {
for (Properties::const_iterator i = m_properties.begin(); i != m_properties.end(); ++i) {
const Property& p = (*i).second;
printout(ALWAYS, "PropertyManager", "Property %s = %s", (*i).first.c_str(), p.str().c_str());
}
}
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#include "XML/Evaluator.h"
namespace DD4hep { XmlTools::Evaluator& g4Evaluator(); }
namespace { static XmlTools::Evaluator& s__eval(DD4hep::g4Evaluator()); }
static string pre_parse_obj(const string& in) {
string res = "";
res.reserve(1024);
for(const char* c = in.c_str(); *c; ++c) {
switch(*c) {
case '\'':
return "Bad object representation";
case ',':
res += "','";
break;
case '(':
case '[':
res += "['";
break;
case ')':
case ']':
res += "']";
break;
default:
res += *c;
break;
}
}
//cout << "Pre-parsed:" << res << endl;
return res;
}
template <typename TYPE> static int fill(std::vector<TYPE>* p,const std::vector<string>& temp) {
const Grammar<TYPE>& g = Grammar<TYPE>::instance();
TYPE val;
for(std::vector<string>::const_iterator i=temp.begin(); i != temp.end(); ++i) {
if ( !g.fromString(&val,*i) )
return 0;
p->push_back(val);
}
return 1;
}
template <typename TYPE> static int fill(std::list<TYPE>* p,const std::vector<string>& temp) {
const Grammar<TYPE>& g = Grammar<TYPE>::instance();
TYPE val;
for(std::vector<string>::const_iterator i=temp.begin(); i != temp.end(); ++i) {
if ( !g.fromString(&val,*i) )
return 0;
p->push_back(val);
}
return 1;
}
template <typename TYPE> static int fill(std::set<TYPE>* p,const std::vector<string>& temp) {
const Grammar<TYPE>& g = Grammar<TYPE>::instance();
TYPE val;
for(std::vector<string>::const_iterator i=temp.begin(); i != temp.end(); ++i) {
if ( !g.fromString(&val,*i) )
return 0;
p->insert(val);
}
return 1;
}
template <typename TYPE> static int eval(TYPE* p, const string& str) {
#ifdef DD4HEP_USE_BOOST
std::vector<string> buff;
int sc = Parsers::parse(buff,str);
if ( sc ) {
return fill(p,buff);
}
else {
TYPE temp;
std::string temp_str = pre_parse_obj(str);
sc = Parsers::parse(temp,temp_str);
if ( sc ) {
*p = temp;
return 1;
}
buff.clear();
sc = Parsers::parse(buff,temp_str);
if ( sc ) {
return fill(p,buff);
}
}
#else
if ( p && str.empty() ) return 0;
#endif
return 0;
}
template <typename T> static int _eval(T* p, string s) {
size_t idx = s.find("(int)");
if (idx != string::npos)
s.erase(idx, 5);
while (s[0] == ' ')
s.erase(0, 1);
double result = s__eval.evaluate(s.c_str());
if (s__eval.status() != XmlTools::Evaluator::OK) {
return 0;
}
*p = (T)result;
return 1;
}
static int _eval(ROOT::Math::XYZPoint* p, const string& str)
{ return Grammar<ROOT::Math::XYZPoint>::instance().fromString(p,pre_parse_obj(str)); }
static int _eval(ROOT::Math::XYZVector* p, const string& str)
{ return Grammar<ROOT::Math::XYZVector>::instance().fromString(p,pre_parse_obj(str)); }
static int _eval(ROOT::Math::PxPyPzEVector* p, const string& str)
{ return Grammar<ROOT::Math::PxPyPzEVector>::instance().fromString(p,pre_parse_obj(str)); }
#define DD4HEP_INSTANTIATE_PROPERTY_EVALUATE(x) \
template<> int Grammar<x >::evaluate(void* p, const string& v) const { return _eval((x*)p,v); }
#define DD4HEP_INSTANTIATE_PROPERTY_EVALUATE1(x) DD4HEP_INSTANTIATE_PROPERTY_EVALUATE(x)\
template<> int Grammar<vector<x> >::evaluate(void* p,const string& v)const{return eval((std::vector<x>*)p,v);} \
template<> int Grammar<list<x> >::evaluate(void* p,const string& v)const{return eval((std::list<x>*)p,v);} \
template<> int Grammar<set<x> >::evaluate(void* p,const string& v)const{return eval((std::set<x>*)p,v);}
#define DD4HEP_INSTANTIATE_PROPERTY_TYPE1(x) \
DD4HEP_INSTANTIATE_PROPERTY_TYPE(x); \
DD4HEP_INSTANTIATE_PROPERTY_TYPE(std::vector<x>); \
DD4HEP_INSTANTIATE_PROPERTY_TYPE(std::list<x>); \
DD4HEP_INSTANTIATE_PROPERTY_TYPE(std::set<x>)
#define DD4HEP_INSTANTIATE_PROPERTY_TYPE2(x) \
DD4HEP_INSTANTIATE_PROPERTY_TYPE1(x); \
DD4HEP_INSTANTIATE_PROPERTY_TYPE1(unsigned x)
// Macros for evaluated properties:
#define DD4HEP_INSTANTIATE_PROPERTY_TYPE0E(x) \
DD4HEP_INSTANTIATE_PROPERTY_EVALUATE(x) \
DD4HEP_INSTANTIATE_PROPERTY_TYPE(x)
#define DD4HEP_INSTANTIATE_PROPERTY_TYPE1E(x) \
DD4HEP_INSTANTIATE_PROPERTY_EVALUATE1(x) \
DD4HEP_INSTANTIATE_PROPERTY_TYPE1(x)
#define DD4HEP_INSTANTIATE_PROPERTY_TYPE2E(x) \
DD4HEP_INSTANTIATE_PROPERTY_TYPE1E(x); \
DD4HEP_INSTANTIATE_PROPERTY_TYPE1E(unsigned x)
DD4HEP_INSTANTIATE_PROPERTY_TYPE2E(char);
DD4HEP_INSTANTIATE_PROPERTY_TYPE2E(short);
DD4HEP_INSTANTIATE_PROPERTY_TYPE2E(int);
DD4HEP_INSTANTIATE_PROPERTY_TYPE2E(long);
DD4HEP_INSTANTIATE_PROPERTY_TYPE2E(long long);
DD4HEP_INSTANTIATE_PROPERTY_TYPE1E(bool);
DD4HEP_INSTANTIATE_PROPERTY_TYPE1E(float);
DD4HEP_INSTANTIATE_PROPERTY_TYPE1E(double);
// STL objects
DD4HEP_INSTANTIATE_PROPERTY_TYPE1(string);
typedef map<string, int> map_string_int;
DD4HEP_INSTANTIATE_PROPERTY_TYPE(map_string_int);
// ROOT::Math Object instances
DD4HEP_INSTANTIATE_PROPERTY_TYPE0E(ROOT::Math::XYZPoint);
DD4HEP_INSTANTIATE_PROPERTY_TYPE0E(ROOT::Math::XYZVector);
DD4HEP_INSTANTIATE_PROPERTY_TYPE0E(ROOT::Math::PxPyPzEVector);