Newer
Older
// $Id: Geant4Converter.cpp 603 2013-06-13 21:15:14Z markus.frank $
//====================================================================
// AIDA Detector description implementation for LCD
//--------------------------------------------------------------------
//
//====================================================================
// Framework include files
#include "DDG4/Geant4InputAction.h"
// C/C++ include files
#include <fstream>
/// Namespace for the AIDA detector description toolkit
namespace DD4hep {
/// Namespace for the Geant4 based simulation part of the AIDA detector description toolkit
namespace Simulation {
/// Class to populate Geant4 primaries from StdHep files.
/**
* Class to populate Geant4 primary particles and vertices from a
* file in HEPEvt format (ASCII)
* \author P.Kostka (main author)
* \author M.Frank (code reshuffeling into new DDG4 scheme)
* \version 1.0
* \ingroup DD4HEP_SIMULATION
class Geant4EventReaderHepEvt : public Geant4EventReader {
protected:
std::ifstream m_input;
public:
/// Initializing constructor
Geant4EventReaderHepEvt(const std::string& nam, int format);
/// Default destructor
virtual ~Geant4EventReaderHepEvt();
/// Read an event and fill a vector of MCParticles.
virtual EventReaderStatus readParticles(int event_number, std::vector<Particle*>& particles);
};
} /* End namespace Simulation */
} /* End namespace DD4hep */
// $Id: Geant4Converter.cpp 603 2013-06-13 21:15:14Z markus.frank $
//====================================================================
// AIDA Detector description implementation for LCD
//--------------------------------------------------------------------
//
//====================================================================
// #include "DDG4/Geant4EventReaderHepEvt"
#include "DDG4/Factories.h"
#include "DD4hep/Printout.h"
#include "CLHEP/Units/SystemOfUnits.h"
#include "CLHEP/Units/PhysicalConstants.h"
#include <cerrno>
using namespace CLHEP;
using namespace DD4hep::Simulation;
typedef DD4hep::ReferenceBitMask<int> PropertyMask;
#define HEPEvtShort 1
#define HEPEvtLong 2
namespace {
class Geant4EventReaderHepEvtShort : public Geant4EventReaderHepEvt {
public:
/// Initializing constructor
Geant4EventReaderHepEvtShort(const string& nam) : Geant4EventReaderHepEvt(nam,HEPEvtShort) {}
/// Default destructor
virtual ~Geant4EventReaderHepEvtShort() {}
};
class Geant4EventReaderHepEvtLong : public Geant4EventReaderHepEvt {
public:
/// Initializing constructor
Geant4EventReaderHepEvtLong(const string& nam) : Geant4EventReaderHepEvt(nam,HEPEvtLong) {}
/// Default destructor
virtual ~Geant4EventReaderHepEvtLong() {}
};
}
// Factory entry
DECLARE_GEANT4_EVENT_READER(Geant4EventReaderHepEvtShort)
// Factory entry
DECLARE_GEANT4_EVENT_READER(Geant4EventReaderHepEvtLong)
/// Initializing constructor
Geant4EventReaderHepEvt::Geant4EventReaderHepEvt(const string& nam, int format)
: Geant4EventReader(nam), m_input(), m_format(format)
{
// Now open the input file:
m_input.open(nam.c_str(),ifstream::in);
if ( !m_input.good() ) {
string err = "+++ Geant4EventReaderHepEvt: Failed to open input stream:"+nam+
" Error:"+string(strerror(errno));
throw runtime_error(err);
}
}
/// Default destructor
Geant4EventReaderHepEvt::~Geant4EventReaderHepEvt() {
m_input.close();
}
/// Read an event and fill a vector of MCParticles.
Geant4EventReader::EventReaderStatus
Geant4EventReaderHepEvt::readParticles(int /* event_number */, vector<Particle*>& particles) {
// First check the input file status
if ( !m_input.good() || m_input.eof() ) {
return EVENT_READER_IO_ERROR;
}
//static const double c_light = 299.792;// mm/ns
//
// Read the event, check for errors
//
int NHEP; // number of entries
m_input >> NHEP;
if( m_input.eof() ) {
//
// End of File :: ??? Exception ???
// -> FG: EOF is not an exception as it happens for every file at the end !
return EVENT_READER_IO_ERROR;
}
//
// Loop over particles
int ISTHEP; // status code
int IDHEP; // PDG code
int JMOHEP1; // first mother
int JMOHEP2; // last mother
int JDAHEP1; // first daughter
int JDAHEP2; // last daughter
double PHEP1; // px in GeV/c
double PHEP2; // py in GeV/c
double PHEP3; // pz in GeV/c
double PHEP4; // energy in GeV
double PHEP5; // mass in GeV/c**2
double VHEP1; // x vertex position in mm
double VHEP2; // y vertex position in mm
double VHEP3; // z vertex position in mm
double VHEP4; // production time in mm/c
vector<int> daughter1;
vector<int> daughter2;
for( int IHEP=0; IHEP<NHEP; IHEP++ ) {
if ( m_format == HEPEvtShort )
m_input >> ISTHEP >> IDHEP >> JDAHEP1 >> JDAHEP2
>> PHEP1 >> PHEP2 >> PHEP3 >> PHEP5;
else
m_input >> ISTHEP >> IDHEP
>> JMOHEP1 >> JMOHEP2
>> JDAHEP1 >> JDAHEP2
>> PHEP1 >> PHEP2 >> PHEP3
>> PHEP4 >> PHEP5
>> VHEP1 >> VHEP2 >> VHEP3
>> VHEP4;
if(m_input.eof())
return EVENT_READER_IO_ERROR;
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//
// Create a MCParticle and fill it from stdhep info
Particle* p = new Particle(IHEP);
PropertyMask status(p->status);
//
// PDGID
p->pdgID = IDHEP;
//
// Momentum vector
p->pex = p->psx = PHEP1*GeV;
p->pey = p->psy = PHEP2*GeV;
p->pez = p->psz = PHEP3*GeV;
//
// Mass
p->mass = PHEP5*GeV;
//
// Vertex
// (missing information in HEPEvt files)
p->vsx = 0.0;
p->vsy = 0.0;
p->vsz = 0.0;
p->vex = 0.0;
p->vey = 0.0;
p->vez = 0.0;
//
// Generator status
// Simulator status 0 until simulator acts on it
p->status = 0;
if ( ISTHEP == 0 ) status.set(G4PARTICLE_GEN_EMPTY);
else if ( ISTHEP == 1 ) status.set(G4PARTICLE_GEN_STABLE);
else if ( ISTHEP == 2 ) status.set(G4PARTICLE_GEN_DECAYED);
else if ( ISTHEP == 3 ) status.set(G4PARTICLE_GEN_DOCUMENTATION);
else status.set(G4PARTICLE_GEN_DOCUMENTATION);
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//
// Creation time (note the units [1/c_light])
// (No information in HEPEvt files)
p->time = 0.0;
p->properTime = 0.0;
//
// Keep daughters information for later
daughter1.push_back(JDAHEP1);
daughter2.push_back(JDAHEP2);
//
// Add the particle to the collection vector
particles.push_back(p);
//
}// End loop over particles
//
// Now make a second loop over the particles, checking the daughter
// information. This is not always consistent with parent
// information, and this utility assumes all parents listed are
// parents and all daughters listed are daughters
//
for( int IHEP=0; IHEP<NHEP; IHEP++ ) {
struct ParticleHandler {
Particle* m_part;
ParticleHandler(Particle* p) : m_part(p) {}
void addParent(const Particle* p) {
m_part->parents.insert(p->id);
}
Particle* findParent(const Particle* p) {
return m_part->parents.find(p->id)==m_part->parents.end() ? 0 : m_part;
}
};
//
// Get the MCParticle
//
Particle* mcp = particles[IHEP];
//
// Get the daughter information, discarding extra information
// sometimes stored in daughter variables.
//
int fd = daughter1[IHEP] - 1;
int ld = daughter2[IHEP] - 1;
//
// As with the parents, look for range, 2 discreet or 1 discreet
// daughter.
if( (fd > -1) && (ld > -1) ) {
if(ld >= fd) {
for(int id=fd;id<ld+1;id++) {
//
// Get the daughter, and see if it already lists this particle as
// a parent. If not, add this particle as a parent
//
ParticleHandler part(particles[id]);
if ( !part.findParent(mcp) ) part.addParent(mcp);
}
}
else { // Same logic, discrete cases
ParticleHandler part_fd(particles[fd]);
if ( !part_fd.findParent(mcp) ) part_fd.addParent(mcp);
ParticleHandler part_ld(particles[ld]);
if ( !part_ld.findParent(mcp) ) part_ld.addParent(mcp);
}
}
else if(fd > -1) {
ParticleHandler part(particles[fd]);
if ( !part.findParent(mcp) ) part.addParent(mcp);
}
else if(ld > -1) {
ParticleHandler part(particles[ld]);
if ( !part.findParent(mcp) ) part.addParent(mcp);
}
} // End second loop over particles
return EVENT_READER_OK;