Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
//
// Node is an assembly:
// Imprint the assembly. The mother MUST already be transformed.
//
transform.getDecomposition(scale, rot, trans);
printout(lvl, "Geant4Converter", "+++ Assembly: makeImprint: dau:%-12s %s in mother %-12s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
node->GetName(), node_is_reflected ? "(REFLECTED)" : "",
mot_vol ? mot_vol->GetName() : "<unknown>",
transform.dx(), transform.dy(), transform.dz(),
scale.xx(), scale.yy(), scale.zz());
Geant4AssemblyVolume* ass = (Geant4AssemblyVolume*)info.g4AssemblyVolumes[node];
Geant4AssemblyVolume::Chain chain;
chain.emplace_back(node);
ass->imprint(info,node,chain,ass,(*volIt).second, transform, copy, checkOverlaps);
return 0;
}
else if ( node != info.manager->GetTopNode() && volIt == info.g4Volumes.end() ) {
throw logic_error("Geant4Converter: Invalid mother volume found!");
}
G4LogicalVolume* g4vol = info.g4Volumes[vol];
G4LogicalVolume* g4mot = info.g4Volumes[mot_vol];
G4PhysicalVolumesPair pvPlaced =
G4ReflectionFactory::Instance()->Place(transform, // no rotation
node->GetName(), // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume
false, // no boolean operations
copy, // its copy number
checkOverlaps);
transform.getDecomposition(scale, rot, trans);
printout(debugReflections ? ALWAYS : lvl, "Geant4Converter",
"+++ Place %svolume %-12s in mother %-12s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
node_is_reflected ? "REFLECTED " : "", _v.name(),
mot_vol ? mot_vol->GetName() : "<unknown>",
transform.dx(), transform.dy(), transform.dz(),
scale.xx(), scale.yy(), scale.zz());
// First 2 cases can be combined.
// Leave them separated for debugging G4ReflectionFactory for now...
if ( node_is_reflected && !pvPlaced.second )
return info.g4Placements[node] = pvPlaced.first;
else if ( !node_is_reflected && !pvPlaced.second )
return info.g4Placements[node] = pvPlaced.first;
//G4LogicalVolume* g4refMoth = G4ReflectionFactory::Instance()->GetReflectedLV(g4mot);
// Now deal with valid pvPlaced.second ...
if ( node_is_reflected )
return info.g4Placements[node] = pvPlaced.first;
else if ( !node_is_reflected )
return info.g4Placements[node] = pvPlaced.first;
g4 = pvPlaced.second ? pvPlaced.second : pvPlaced.first;
}
info.g4Placements[node] = g4;
printout(ERROR, "Geant4Converter", "++ DEAD code. Should not end up here!");
}
else {
printout(ERROR, "Geant4Converter", "++ Attempt to DOUBLE-place physical volume: %s No:%d",
node->GetName(), node->GetNumber());
}
return g4;
}
/// Convert the geometry type region into the corresponding Geant4 object(s).
void* Geant4Converter::handleRegion(Region region, const set<const TGeoVolume*>& /* volumes */) const {
G4Region* g4 = data().g4Regions[region];
Markus Frank
committed
PrintLevel lvl = debugRegions ? ALWAYS : outputLevel;
Region r = region;
Markus Frank
committed
g4 = new G4Region(r.name());
// create region info with storeSecondaries flag
Andre Sailer
committed
if( not r.wasThresholdSet() and r.storeSecondaries() ) {
throw runtime_error("G4Region: StoreSecondaries is True, but no explicit threshold set:");
}
printout(lvl, "Geant4Converter", "++ Setting up region: %s", r.name());
G4UserRegionInformation* info = new G4UserRegionInformation();
info->region = r;
info->threshold = r.threshold()*CLHEP::MeV/units::MeV;
info->storeSecondaries = r.storeSecondaries();
g4->SetUserInformation(info);
printout(lvl, "Geant4Converter", "++ Converted region settings of:%s.", r.name());
vector < string > &limits = r.limits();
G4ProductionCuts* cuts = 0;
// set production cut
if( not r.useDefaultCut() ) {
cuts = new G4ProductionCuts();
cuts->SetProductionCut(r.cut()*CLHEP::mm/units::mm);
printout(lvl, "Geant4Converter", "++ %s: Using default cut: %f [mm]",
r.name(), r.cut()*CLHEP::mm/units::mm);
}
for (const auto& nam : limits ) {
LimitSet ls = m_detDesc.limitSet(nam);
const LimitSet::Set& cts = ls.cuts();
for (const auto& c : cts ) {
if ( c.particles == "*" ) pid = -1;
else if ( c.particles == "e-" ) pid = idxG4ElectronCut;
else if ( c.particles == "e+" ) pid = idxG4PositronCut;
else if ( c.particles == "e[+-]" ) pid = -idxG4PositronCut-idxG4ElectronCut;
else if ( c.particles == "e[-+]" ) pid = -idxG4PositronCut-idxG4ElectronCut;
else if ( c.particles == "gamma" ) pid = idxG4GammaCut;
else if ( c.particles == "proton" ) pid = idxG4ProtonCut;
else throw runtime_error("G4Region: Invalid production cut particle-type:" + c.particles);
if ( !cuts ) cuts = new G4ProductionCuts();
if ( pid == -(idxG4PositronCut+idxG4ElectronCut) ) {
cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, idxG4PositronCut);
cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, idxG4ElectronCut);
}
else {
cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, pid);
}
printout(lvl, "Geant4Converter", "++ %s: Set cut [%s/%d] = %f [mm]",
r.name(), c.particles.c_str(), pid, c.value*CLHEP::mm/units::mm);
}
const auto& lm = data().g4Limits;
for (const auto& j : lm ) {
if (nam == j.first->GetName()) {
g4->SetUserLimits(j.second);
printout(lvl, "Geant4Converter", "++ %s: Set limits %s to region type %s",
r.name(), nam.c_str(), j.second->GetType().c_str());
found = true;
break;
}
}
if ( found ) {
throw runtime_error("G4Region: Failed to resolve user limitset:" + nam);
/// Assign cuts to region if they were created
if ( cuts ) g4->SetProductionCuts(cuts);
data().g4Regions[region] = g4;
}
return g4;
}
/// Convert the geometry type LimitSet into the corresponding Geant4 object(s).
void* Geant4Converter::handleLimitSet(LimitSet limitset, const set<const TGeoVolume*>& /* volumes */) const {
G4UserLimits* g4 = data().g4Limits[limitset];
if (!g4) {
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
struct LimitPrint {
const LimitSet& ls;
LimitPrint(const LimitSet& lset) : ls(lset) {}
const LimitPrint& operator()(const std::string& pref, const Geant4UserLimits::Handler& h) const {
if ( !h.particleLimits.empty() ) {
printout(ALWAYS,"Geant4Converter",
"+++ LimitSet: Limit %s.%s applied for particles:",ls.name(), pref.c_str());
for(const auto& p : h.particleLimits)
printout(ALWAYS,"Geant4Converter","+++ LimitSet: Particle type: %-18s PDG: %-6d : %f",
p.first->GetParticleName().c_str(), p.first->GetPDGEncoding(), p.second);
}
else {
printout(ALWAYS,"Geant4Converter",
"+++ LimitSet: Limit %s.%s NOT APPLIED.",ls.name(), pref.c_str());
}
return *this;
}
};
Geant4UserLimits* limits = new Geant4UserLimits(limitset);
g4 = limits;
if ( debugRegions ) {
LimitPrint print(limitset);
print("maxTime", limits->maxTime)
("minEKine", limits->minEKine)
("minRange", limits->minRange)
("maxStepLength", limits->maxStepLength)
("maxTrackLength",limits->maxTrackLength);
}
data().g4Limits[limitset] = g4;
}
return g4;
}
/// Convert the geometry visualisation attributes to the corresponding Geant4 object(s).
void* Geant4Converter::handleVis(const string& /* name */, VisAttr attr) const {
Geant4GeometryInfo& info = data();
G4VisAttributes* g4 = info.g4Vis[attr];
if ( !g4 ) {
int style = attr.lineStyle();
attr.rgb(red, green, blue);
g4 = new G4VisAttributes(attr.visible(), G4Colour(red, green, blue, attr.alpha()));
//g4->SetLineWidth(attr->GetLineWidth());
g4->SetDaughtersInvisible(!attr.showDaughters());
if ( style == VisAttr::SOLID ) {
g4->SetLineStyle(G4VisAttributes::unbroken);
g4->SetForceWireframe(false);
g4->SetForceSolid(true);
}
else if ( style == VisAttr::WIREFRAME || style == VisAttr::DASHED ) {
g4->SetLineStyle(G4VisAttributes::dashed);
g4->SetForceSolid(false);
g4->SetForceWireframe(true);
}
}
return g4;
}
/// Handle the geant 4 specific properties
void Geant4Converter::handleProperties(Detector::Properties& prp) const {
map < string, string > processors;
static int s_idd = 9999999;
string id;
for (Detector::Properties::const_iterator i = prp.begin(); i != prp.end(); ++i) {
const string& nam = (*i).first;
const Detector::PropertyValues& vals = (*i).second;
if (nam.substr(0, 6) == "geant4") {
Detector::PropertyValues::const_iterator id_it = vals.find("id");
if (id_it != vals.end()) {
id = (*id_it).second;
::snprintf(txt, sizeof(txt), "%d", ++s_idd);
processors.emplace(id, nam);
for (map<string, string>::const_iterator i = processors.begin(); i != processors.end(); ++i) {
const Detector::PropertyValues& vals = prp[nam];
string type = vals.find("type")->second;
string tag = type + "_Geant4_action";
Detector* detPtr = const_cast<Detector*>(&m_detDesc);
long result = PluginService::Create<long>(tag, detPtr, hdlr, &vals);
throw runtime_error("Failed to locate plugin to interprete files of type"
Markus Frank
committed
" \"" + tag + "\" - no factory:" + type);
result = *(long*) result;
if (result != 1) {
throw runtime_error("Failed to invoke the plugin " + tag + " of type " + type);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "+++++ Executed Successfully Geant4 setup module *%s*.", type.c_str());
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Convert the geometry type material into the corresponding Geant4 object(s).
void* Geant4Converter::handleMaterialProperties(TObject* matrix) const {
Geant4GeometryInfo& info = data();
Geant4GeometryInfo::PropertyVector* g4 = info.g4OpticalProperties[gdmlMat];
Markus Frank
committed
PrintLevel lvl = debugMaterials ? ALWAYS : outputLevel;
g4 = new Geant4GeometryInfo::PropertyVector();
size_t rows = gdmlMat->GetRows();
g4->name = gdmlMat->GetName();
g4->title = gdmlMat->GetTitle();
g4->bins.reserve(rows);
g4->values.reserve(rows);
for(size_t i=0; i<rows; ++i) {
g4->bins.emplace_back(gdmlMat->Get(i,0) /* *CLHEP::eV/units::eV */);
g4->values.emplace_back(gdmlMat->Get(i,1));
Markus Frank
committed
printout(lvl, "Geant4Converter", "++ Successfully converted material property:%s : %s [%ld rows]",
gdmlMat->GetName(), gdmlMat->GetTitle(), rows);
info.g4OpticalProperties[gdmlMat] = g4;
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
}
return g4;
}
static G4OpticalSurfaceFinish geant4_surface_finish(TGeoOpticalSurface::ESurfaceFinish f) {
#define TO_G4_FINISH(x) case TGeoOpticalSurface::kF##x : return x;
switch(f) {
TO_G4_FINISH(polished); // smooth perfectly polished surface
TO_G4_FINISH(polishedfrontpainted); // smooth top-layer (front) paint
TO_G4_FINISH(polishedbackpainted); // same is 'polished' but with a back-paint
TO_G4_FINISH(ground); // rough surface
TO_G4_FINISH(groundfrontpainted); // rough top-layer (front) paint
TO_G4_FINISH(groundbackpainted); // same as 'ground' but with a back-paint
TO_G4_FINISH(polishedlumirrorair); // mechanically polished surface, with lumirror
TO_G4_FINISH(polishedlumirrorglue); // mechanically polished surface, with lumirror & meltmount
TO_G4_FINISH(polishedair); // mechanically polished surface
TO_G4_FINISH(polishedteflonair); // mechanically polished surface, with teflon
TO_G4_FINISH(polishedtioair); // mechanically polished surface, with tio paint
TO_G4_FINISH(polishedtyvekair); // mechanically polished surface, with tyvek
TO_G4_FINISH(polishedvm2000air); // mechanically polished surface, with esr film
TO_G4_FINISH(polishedvm2000glue); // mechanically polished surface, with esr film & meltmount
TO_G4_FINISH(etchedlumirrorair); // chemically etched surface, with lumirror
TO_G4_FINISH(etchedlumirrorglue); // chemically etched surface, with lumirror & meltmount
TO_G4_FINISH(etchedair); // chemically etched surface
TO_G4_FINISH(etchedteflonair); // chemically etched surface, with teflon
TO_G4_FINISH(etchedtioair); // chemically etched surface, with tio paint
TO_G4_FINISH(etchedtyvekair); // chemically etched surface, with tyvek
TO_G4_FINISH(etchedvm2000air); // chemically etched surface, with esr film
TO_G4_FINISH(etchedvm2000glue); // chemically etched surface, with esr film & meltmount
TO_G4_FINISH(groundlumirrorair); // rough-cut surface, with lumirror
TO_G4_FINISH(groundlumirrorglue); // rough-cut surface, with lumirror & meltmount
TO_G4_FINISH(groundair); // rough-cut surface
TO_G4_FINISH(groundteflonair); // rough-cut surface, with teflon
TO_G4_FINISH(groundtioair); // rough-cut surface, with tio paint
TO_G4_FINISH(groundtyvekair); // rough-cut surface, with tyvek
TO_G4_FINISH(groundvm2000air); // rough-cut surface, with esr film
TO_G4_FINISH(groundvm2000glue); // rough-cut surface, with esr film & meltmount
// for DAVIS model
TO_G4_FINISH(Rough_LUT); // rough surface
TO_G4_FINISH(RoughTeflon_LUT); // rough surface wrapped in Teflon tape
TO_G4_FINISH(RoughESR_LUT); // rough surface wrapped with ESR
TO_G4_FINISH(RoughESRGrease_LUT); // rough surface wrapped with ESR and coupled with opical grease
TO_G4_FINISH(Polished_LUT); // polished surface
TO_G4_FINISH(PolishedTeflon_LUT); // polished surface wrapped in Teflon tape
TO_G4_FINISH(PolishedESR_LUT); // polished surface wrapped with ESR
TO_G4_FINISH(PolishedESRGrease_LUT); // polished surface wrapped with ESR and coupled with opical grease
TO_G4_FINISH(Detector_LUT); // polished surface with optical grease
default:
printout(ERROR,"Geant4Surfaces","++ Unknown finish style: %d [%s]. Assume polished!",
int(f), TGeoOpticalSurface::FinishToString(f));
return polished;
}
#undef TO_G4_FINISH
}
static G4SurfaceType geant4_surface_type(TGeoOpticalSurface::ESurfaceType t) {
#define TO_G4_TYPE(x) case TGeoOpticalSurface::kT##x : return x;
switch(t) {
TO_G4_TYPE(dielectric_metal); // dielectric-metal interface
TO_G4_TYPE(dielectric_dielectric); // dielectric-dielectric interface
TO_G4_TYPE(dielectric_LUT); // dielectric-Look-Up-Table interface
TO_G4_TYPE(dielectric_LUTDAVIS); // dielectric-Look-Up-Table DAVIS interface
TO_G4_TYPE(dielectric_dichroic); // dichroic filter interface
TO_G4_TYPE(firsov); // for Firsov Process
TO_G4_TYPE(x_ray); // for x-ray mirror process
default:
printout(ERROR,"Geant4Surfaces","++ Unknown surface type: %d [%s]. Assume dielectric_metal!",
int(t), TGeoOpticalSurface::TypeToString(t));
return dielectric_metal;
}
#undef TO_G4_TYPE
}
static G4OpticalSurfaceModel geant4_surface_model(TGeoOpticalSurface::ESurfaceModel surfMod) {
#define TO_G4_MODEL(x) case TGeoOpticalSurface::kM##x : return x;
TO_G4_MODEL(glisur); // original GEANT3 model
TO_G4_MODEL(unified); // UNIFIED model
TO_G4_MODEL(LUT); // Look-Up-Table model
TO_G4_MODEL(DAVIS); // DAVIS model
TO_G4_MODEL(dichroic); // dichroic filter
default:
printout(ERROR,"Geant4Surfaces","++ Unknown surface model: %d [%s]. Assume glisur!",
int(surfMod), TGeoOpticalSurface::ModelToString(surfMod));
return glisur;
}
#undef TO_G4_MODEL
}
/// Convert the optical surface to Geant4
void* Geant4Converter::handleOpticalSurface(TObject* surface) const {
TGeoOpticalSurface* optSurf = (TGeoOpticalSurface*)surface;
Geant4GeometryInfo& info = data();
G4OpticalSurface* g4 = info.g4OpticalSurfaces[optSurf];
G4SurfaceType type = geant4_surface_type(optSurf->GetType());
G4OpticalSurfaceModel model = geant4_surface_model(optSurf->GetModel());
G4OpticalSurfaceFinish finish = geant4_surface_finish(optSurf->GetFinish());
g4 = new G4OpticalSurface(optSurf->GetName(), model, finish, type, optSurf->GetValue());
g4->SetSigmaAlpha(optSurf->GetSigmaAlpha());
// not implemented: g4->SetPolish(s->GetPolish());
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created OpticalSurface: %-18s type:%s model:%s finish:%s",
optSurf->GetName(),
TGeoOpticalSurface::TypeToString(optSurf->GetType()),
TGeoOpticalSurface::ModelToString(optSurf->GetModel()),
TGeoOpticalSurface::FinishToString(optSurf->GetFinish()));
G4MaterialPropertiesTable* tab = 0;
Markus Frank
committed
for(TObject* obj = it.Next(); obj; obj = it.Next()) {
TNamed* named = (TNamed*)obj;
TGDMLMatrix* matrix = info.manager->GetGDMLMatrix(named->GetTitle());
if ( 0 == tab ) {
tab = new G4MaterialPropertiesTable();
g4->SetMaterialPropertiesTable(tab);
}
Geant4GeometryInfo::PropertyVector* v =
(Geant4GeometryInfo::PropertyVector*)handleMaterialProperties(matrix);
if ( !v ) { // Error!
except("Geant4OpticalSurface","++ Failed to convert opt.surface %s. Property table %s is not defined!",
optSurf->GetName(), named->GetTitle());
}
int idx = tab->GetPropertyIndex(named->GetName(), false);
if ( idx < 0 ) {
printout(ERROR, "Geant4Converter", "++ UNKNOWN Geant4 Property: %-20s [IGNORED]", named->GetName());
continue;
// We need to convert the property from TGeo units to Geant4 units
auto conv = g4PropertyConversion(idx);
vector<double> bins(v->bins), vals(v->values);
for(size_t i=0, count=v->bins.size(); i<count; ++i)
bins[i] *= conv.first, vals[i] *= conv.second;
G4MaterialPropertyVector* vec = new G4MaterialPropertyVector(&bins[0], &vals[0], bins.size());
tab->AddProperty(named->GetName(), vec);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Property: %-20s [%ld x %ld] --> %s",
named->GetName(), matrix->GetRows(), matrix->GetCols(), named->GetTitle());
for(size_t i=0, count=v->bins.size(); i<count; ++i)
printout(debugSurfaces ? ALWAYS : DEBUG, named->GetName(),
" Geant4: %8.3g [MeV] TGeo: %8.3g [GeV] Conversion: %8.3g",
bins[i], v->bins[i], conv.first);
}
return g4;
}
/// Convert the skin surface to Geant4
void* Geant4Converter::handleSkinSurface(TObject* surface) const {
TGeoSkinSurface* surf = (TGeoSkinSurface*)surface;
Geant4GeometryInfo& info = data();
G4LogicalSkinSurface* g4 = info.g4SkinSurfaces[surf];
if (!g4) {
G4OpticalSurface* optSurf = info.g4OpticalSurfaces[OpticalSurface(surf->GetSurface())];
G4LogicalVolume* v = info.g4Volumes[surf->GetVolume()];
g4 = new G4LogicalSkinSurface(surf->GetName(), v, optSurf);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created SkinSurface: %-18s optical:%s",
surf->GetName(), surf->GetSurface()->GetName());
info.g4SkinSurfaces[surf] = g4;
}
return g4;
}
/// Convert the border surface to Geant4
void* Geant4Converter::handleBorderSurface(TObject* surface) const {
TGeoBorderSurface* surf = (TGeoBorderSurface*)surface;
Geant4GeometryInfo& info = data();
G4LogicalBorderSurface* g4 = info.g4BorderSurfaces[surf];
if (!g4) {
G4OpticalSurface* optSurf = info.g4OpticalSurfaces[OpticalSurface(surf->GetSurface())];
G4VPhysicalVolume* n1 = info.g4Placements[surf->GetNode1()];
G4VPhysicalVolume* n2 = info.g4Placements[surf->GetNode2()];
g4 = new G4LogicalBorderSurface(surf->GetName(), n1, n2, optSurf);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created BorderSurface: %-18s optical:%s",
surf->GetName(), surf->GetSurface()->GetName());
info.g4BorderSurfaces[surf] = g4;
}
return g4;
}
#endif
/// Convert the geometry type SensitiveDetector into the corresponding Geant4 object(s).
Markus Frank
committed
void Geant4Converter::printSensitive(SensitiveDetector sens_det, const set<const TGeoVolume*>& /* volumes */) const {
Geant4GeometryInfo& info = data();
set<const TGeoVolume*>& volset = info.sensitives[sens_det];
SensitiveDetector sd = sens_det;
Markus Frank
committed
stringstream str;
printout(INFO, "Geant4Converter", "++ SensitiveDetector: %-18s %-20s Hits:%-16s", sd.name(), ("[" + sd.type() + "]").c_str(),
Markus Frank
committed
sd.hitsCollection().c_str());
str << " | " << "Cutoff:" << setw(6) << left << sd.energyCutoff() << setw(5) << right << volset.size()
<< " volumes ";
if (sd.region().isValid())
str << " Region:" << setw(12) << left << sd.region().name();
if (sd.limits().isValid())
str << " Limits:" << setw(12) << left << sd.limits().name();
Markus Frank
committed
str << ".";
printout(INFO, "Geant4Converter", str.str().c_str());
for (const auto i : volset ) {
map<Volume, G4LogicalVolume*>::iterator v = info.g4Volumes.find(i);
Markus Frank
committed
str.str("");
str << " | " << "Volume:" << setw(24) << left << vol->GetName() << " "
<< vol->GetNoDaughters() << " daughters.";
Markus Frank
committed
printout(INFO, "Geant4Converter", str.str().c_str());
Markus Frank
committed
string printSolid(G4VSolid* sol) {
stringstream str;
if (typeid(*sol) == typeid(G4Box)) {
const G4Box* b = (G4Box*) sol;
Markus Frank
committed
str << "++ Box: x=" << b->GetXHalfLength() << " y=" << b->GetYHalfLength() << " z=" << b->GetZHalfLength();
else if (typeid(*sol) == typeid(G4Tubs)) {
const G4Tubs* t = (const G4Tubs*) sol;
str << " Tubs: Ri=" << t->GetInnerRadius() << " Ra=" << t->GetOuterRadius() << " z/2=" << t->GetZHalfLength() << " Phi="
<< t->GetStartPhiAngle() << "..." << t->GetDeltaPhiAngle();
Markus Frank
committed
return str.str();
}
/// Print G4 placement
void* Geant4Converter::printPlacement(const string& name, const TGeoNode* node) const {
Geant4GeometryInfo& info = data();
G4VPhysicalVolume* g4 = info.g4Placements[node];
G4LogicalVolume* vol = info.g4Volumes[node->GetVolume()];
G4LogicalVolume* mot = info.g4Volumes[node->GetMotherVolume()];
G4VSolid* sol = vol->GetSolid();
G4ThreeVector tr = g4->GetObjectTranslation();
G4VSensitiveDetector* sd = vol->GetSensitiveDetector();
Markus Frank
committed
stringstream str;
str << "G4Cnv::placement: + " << name << " No:" << node->GetNumber() << " Vol:" << vol->GetName() << " Solid:"
<< sol->GetName();
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
Markus Frank
committed
str.str("");
str << " |" << " Loc: x=" << tr.x() << " y=" << tr.y() << " z=" << tr.z();
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
printout(outputLevel, "G4Placement", printSolid(sol).c_str());
Markus Frank
committed
str.str("");
str << " |" << " Ndau:" << vol->GetNoDaughters() << " physvols." << " Mat:" << vol->GetMaterial()->GetName()
<< " Mother:" << (char*) (mot ? mot->GetName().c_str() : "---");
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
Markus Frank
committed
str.str("");
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
namespace {
template <typename O, typename C, typename F> void handleRefs(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
//(o->*pmf)((*i)->GetName(), *i);
(o->*pmf)("", *i);
}
template <typename O, typename C, typename F> void handle(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
(o->*pmf)((*i)->GetName(), *i);
}
template <typename O, typename F> void handleArray(const O* o, const TObjArray* c, F pmf) {
TObjArrayIter arr(c);
for(TObject* i = arr.Next(); i; i=arr.Next())
(o->*pmf)(i);
}
template <typename O, typename C, typename F> void handleMap(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i)
(o->*pmf)((*i).first, (*i).second);
}
template <typename O, typename C, typename F> void handleRMap(const O* o, const C& c, F pmf) {
for (typename C::const_reverse_iterator i = c.rbegin(); i != c.rend(); ++i) {
//cout << "Handle RMAP [ " << (*i).first << " ]" << endl;
handle(o, (*i).second, pmf);
}
template <typename O, typename C, typename F> void handleRMap_(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
const auto& cc = (*i).second;
for (const auto& j : cc) {
(o->*pmf)(j);
}
}
}
Markus Frank
committed
Geant4Converter& Geant4Converter::create(DetElement top) {
Geant4GeometryInfo& geo = this->init();
geo.manager = &wrld.detectorDescription().manager();
Markus Frank
committed
collect(top, geo);
Markus Frank
committed
checkOverlaps = false;
// We do not have to handle defines etc.
// All positions and the like are not really named.
// Hence, start creating the G4 objects for materials, solids and log volumes.
Markus Frank
committed
//outputLevel = WARNING;
//debugMaterials = true;
//debugElements = true;
//debugReflections = true;
//debugPlacements = true;
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
handleArray(this, geo.manager->GetListOfGDMLMatrices(), &Geant4Converter::handleMaterialProperties);
handleArray(this, geo.manager->GetListOfOpticalSurfaces(), &Geant4Converter::handleOpticalSurface);
#endif
handle(this, geo.volumes, &Geant4Converter::collectVolume);
handle(this, geo.solids, &Geant4Converter::handleSolid);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld solids.", geo.solids.size());
handleRefs(this, geo.vis, &Geant4Converter::handleVis);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld visualization attributes.", geo.vis.size());
handleMap(this, geo.limits, &Geant4Converter::handleLimitSet);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld limit sets.", geo.limits.size());
handleMap(this, geo.regions, &Geant4Converter::handleRegion);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld regions.", geo.regions.size());
handle(this, geo.volumes, &Geant4Converter::handleVolume);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld volumes.", geo.volumes.size());
handleRMap(this, *m_data, &Geant4Converter::handleAssembly);
// Now place all this stuff appropriately
handleRMap(this, *m_data, &Geant4Converter::handlePlacement);
//handleRMap_(this, *m_places, &Geant4Converter::handlePlacement2);
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Handle concrete surfaces
handleArray(this, geo.manager->GetListOfSkinSurfaces(), &Geant4Converter::handleSkinSurface);
handleArray(this, geo.manager->GetListOfBorderSurfaces(), &Geant4Converter::handleBorderSurface);
#endif
//==================== Fields
Markus Frank
committed
if ( printSensitives ) {
handleMap(this, geo.sensitives, &Geant4Converter::printSensitive);
}
if ( printPlacements ) {
handleRMap(this, *m_data, &Geant4Converter::printPlacement);
}
geo.setWorld(top.placement().ptr());
geo.valid = true;
printout(INFO, "Geant4Converter", "+++ Successfully converted geometry to Geant4.");
Markus Frank
committed
return *this;