Newer
Older
// $Id: Geant4Field.cpp 888 2013-11-14 15:54:56Z markus.frank@cern.ch $
//====================================================================
// AIDA Detector description implementation for LCD
//--------------------------------------------------------------------
//
// Author : M.Frank
//
//====================================================================
// Framework include files
//#include "DD4hep/Printout.h"
#include "DD4hep/Primitives.h"
#include "DD4hep/InstanceCount.h"
#include "DDG4/Geant4StepHandler.h"
#include "DDG4/Geant4TrackHandler.h"
#include "DDG4/Geant4EventAction.h"
#include "DDG4/Geant4TrackingAction.h"
#include "DDG4/Geant4SteppingAction.h"
#include "DDG4/Geant4ParticleHandler.h"
#include "G4Track.hh"
#include "G4Event.hh"
#include "G4TrackStatus.hh"
#include "G4PrimaryVertex.hh"
#include "G4PrimaryParticle.hh"
#include "G4TrackingManager.hh"
#include "G4ParticleDefinition.hh"
#include "CLHEP/Units/SystemOfUnits.h"
#include <set>
#include <stdexcept>
#include <algorithm>
using namespace std;
using namespace DD4hep;
using namespace DD4hep::Simulation;
typedef ReferenceBitMask<int> PropertyMask;
namespace {
G4PrimaryParticle* primary(int id, const G4Event& evt) {
for(int i=0, ni=evt.GetNumberOfPrimaryVertex(); i<ni; ++i) {
G4PrimaryVertex* v = evt.GetPrimaryVertex(i);
for(int j=0, nj=v->GetNumberOfParticle(); j<nj; ++j) {
G4PrimaryParticle* p = v->GetPrimary(j);
if ( id == p->GetTrackID() ) {
return p;
}
}
}
return 0;
Geant4ParticleHandler::Geant4ParticleHandler(Geant4Context* context, const string& nam)
: Geant4GeneratorAction(context,nam), Geant4MonteCarloTruth(), m_userHandler(0), m_primaryMap(0)
{
//generatorAction().adopt(this);
eventAction().callAtBegin(this,&Geant4ParticleHandler::beginEvent);
eventAction().callAtEnd(this,&Geant4ParticleHandler::endEvent);
trackingAction().callAtFinal(this,&Geant4ParticleHandler::end,CallbackSequence::FRONT);
trackingAction().callUpFront(this,&Geant4ParticleHandler::begin,CallbackSequence::FRONT);
steppingAction().call(this,&Geant4ParticleHandler::step);
m_globalParticleID = 0;
declareProperty("PrintEndTracking", m_printEndTracking = false);
declareProperty("PrintStartTracking", m_printStartTracking = false);
declareProperty("KeepAllParticles", m_keepAll = false);
declareProperty("SaveProcesses", m_processNames);
declareProperty("MinimalKineticEnergy",m_kinEnergyCut = 100e0*MeV);
InstanceCount::increment(this);
}
/// No default constructor
Geant4ParticleHandler::Geant4ParticleHandler() : Geant4GeneratorAction(0,"") {
}
/// Default destructor
Geant4ParticleHandler::~Geant4ParticleHandler() {
InstanceCount::decrement(this);
}
/// No assignment operator
Geant4ParticleHandler& Geant4ParticleHandler::operator=(const Geant4ParticleHandler&) {
return *this;
}
bool Geant4ParticleHandler::adopt(Geant4Action* action) {
if ( action ) {
if ( !m_userHandler ) {
Geant4UserParticleHandler* h = dynamic_cast<Geant4UserParticleHandler*>(action);
if ( h ) {
m_userHandler = h;
m_userHandler->addRef();
return true;
}
except("Cannot add an invalid user particle handler object [Invalid-object-type].", c_name());
}
except("Cannot add an user particle handler object [Object-exists].", c_name());
}
except("Cannot add an invalid user particle handler object [NULL-object].", c_name());
return false;
}
/// Clear particle maps
void Geant4ParticleHandler::clear() {
releaseObjects(m_particleMap)();
m_particleMap.clear();
m_equivalentTracks.clear();
}
/// Mark a Geant4 track to be kept for later MC truth analysis
void Geant4ParticleHandler::mark(const G4Track* track, int reason) {
if ( track ) {
if ( reason != 0 ) {
PropertyMask(m_currTrack.reason).set(reason);
return;
}
except("Cannot mark the G4Track if the pointer is invalid!", c_name());
}
/// Store a track produced in a step to be kept for later MC truth analysis
void Geant4ParticleHandler::mark(const G4Step* step, int reason) {
return;
}
except("Cannot mark the G4Track if the step-pointer is invalid!", c_name());
}
/// Mark a Geant4 track of the step to be kept for later MC truth analysis
void Geant4ParticleHandler::mark(const G4Step* step) {
if ( step ) {
mark(step->GetTrack());
return;
}
except("Cannot mark the G4Track if the step-pointer is invalid!", c_name());
}
/// Mark a Geant4 track of the step to be kept for later MC truth analysis
void Geant4ParticleHandler::mark(const G4Track* track) {
PropertyMask mask(m_currTrack.reason);
mask.set(G4PARTICLE_CREATED_HIT);
/// Check if the track origines from the calorimeter.
// If yes, flag it, because it is a candidate fro removal.
G4VPhysicalVolume* vol = track->GetVolume();
if ( strstr(vol->GetName().c_str(),"cal") ) { // just for test!
mask.set(G4PARTICLE_CREATED_CALORIMETER_HIT);
else if ( !mask.isSet(G4PARTICLE_CREATED_TRACKER_HIT) ) {
mask.set(G4PARTICLE_CREATED_TRACKER_HIT);
//Geant4ParticleHandle(&m_currTrack).dump4(outputLevel(),vol->GetName(),"hit created by particle");
}
/// Event generation action callback
void Geant4ParticleHandler::operator()(G4Event* event) {
typedef Geant4MonteCarloTruth _MC;
info("+++ Event:%d Add EVENT extension of type Geant4ParticleHandler.....",event->GetEventID());
context()->event().addExtension((_MC*)this, typeid(_MC), 0);
/// Call the user particle handler
if ( m_userHandler ) {
m_userHandler->generate(event, this);
}
void Geant4ParticleHandler::step(const G4Step* step, G4SteppingManager* mgr) {
typedef vector<const G4Track*> _Sec;
if ( (m_currTrack.reason&G4PARTICLE_ABOVE_ENERGY_THRESHOLD) ) {
//
// Tracks below the energy threshold are NOT stored.
// If these tracks produce hits or are selected due to another signature,
// this criterium will anyhow take precedence.
//
const _Sec* sec=step->GetSecondaryInCurrentStep();
if ( sec->size() > 0 ) {
PropertyMask(m_currTrack.reason).set(G4PARTICLE_HAS_SECONDARIES);
}
}
/// Update of the particle using the user handler
if ( m_userHandler ) {
m_userHandler->step(step, mgr, m_currTrack);
}
}
/// Pre-track action callback
void Geant4ParticleHandler::begin(const G4Track* track) {
Geant4TrackHandler h(track);
double kine = h.kineticEnergy();
G4ThreeVector m = h.momentum();
const G4ThreeVector& v = h.vertex();
int reason = (kine > m_kinEnergyCut) ? G4PARTICLE_ABOVE_ENERGY_THRESHOLD : 0;
G4PrimaryParticle* prim = primary(h.id(),context()->event().event());
Particle* prim_part = 0;
if ( prim ) {
Geant4PrimaryMap::Primaries::const_iterator iprim = m_primaryMap->primaryMap.find(prim);
if ( iprim == m_primaryMap->primaryMap.end() ) {
except("+++ Tracking preaction: Primary particle without generator particle!");
}
prim_part = (*iprim).second;
reason |= (G4PARTICLE_PRIMARY|G4PARTICLE_ABOVE_ENERGY_THRESHOLD);
m_particleMap[h.id()] = prim_part->addRef();
}
if ( prim_part ) {
m_currTrack.id = prim_part->id;
m_currTrack.reason = prim_part->reason|reason;
m_currTrack.status = prim_part->status;
m_currTrack.spin[0] = prim_part->spin[0];
m_currTrack.spin[1] = prim_part->spin[1];
m_currTrack.spin[2] = prim_part->spin[2];
m_currTrack.colorFlow[0] = prim_part->colorFlow[0];
m_currTrack.colorFlow[1] = prim_part->colorFlow[1];
m_currTrack.parents = prim_part->parents;
m_currTrack.daughters = prim_part->daughters;
m_currTrack.definition = prim_part->definition;
m_currTrack.pdgID = prim_part->pdgID;
m_currTrack.mass = prim_part->mass;
}
else {
m_currTrack.id = m_globalParticleID;
m_currTrack.reason = reason;
m_currTrack.status |= G4PARTICLE_SIM_CREATED;
m_currTrack.spin[0] = 0;
m_currTrack.spin[1] = 0;
m_currTrack.spin[2] = 0;
m_currTrack.colorFlow[0] = 0;
m_currTrack.colorFlow[1] = 0;
m_currTrack.parents.clear();
m_currTrack.daughters.clear();
m_currTrack.definition = h.trackDef();
m_currTrack.pdgID = h.trackDef()->GetPDGEncoding();
m_currTrack.mass = h.trackDef()->GetPDGMass();
++m_globalParticleID;
}
Markus Frank
committed
m_currTrack.steps = 0;
m_currTrack.secondaries = 0;
m_currTrack.g4Parent = h.parent();
m_currTrack.process = h.creatorProcess();
m_currTrack.time = h.globalTime();
m_currTrack.vsx = v.x();
m_currTrack.vsy = v.y();
m_currTrack.vsz = v.z();
m_currTrack.vex = 0.0;
m_currTrack.vey = 0.0;
m_currTrack.vez = 0.0;
m_currTrack.psx = m.x();
m_currTrack.psy = m.y();
m_currTrack.psz = m.z();
m_currTrack.pex = 0.0;
m_currTrack.pey = 0.0;
m_currTrack.pez = 0.0;
// If the creator process of the track is in the list of process products to be kept, set the proper flag
if ( m_currTrack.process ) {
Processes::iterator i=find(m_processNames.begin(),m_processNames.end(),m_currTrack.process->GetProcessName());
if ( i != m_processNames.end() ) {
PropertyMask(m_currTrack.reason).set(G4PARTICLE_KEEP_PROCESS);
}
}
if ( m_keepAll ) {
PropertyMask(m_currTrack.reason).set(G4PARTICLE_KEEP_ALWAYS);
}
/// Initial update of the particle using the user handler
if ( m_userHandler ) {
m_userHandler->begin(track, m_currTrack);
}
}
/// Post-track action callback
void Geant4ParticleHandler::end(const G4Track* track) {
Geant4TrackHandler h(track);
Geant4ParticleHandle ph(&m_currTrack);
int g4_id = h.id();
int track_reason = m_currTrack.reason;
PropertyMask mask(m_currTrack.reason);
// Update vertex end point and final momentum
G4ThreeVector m = track->GetMomentum();
const G4ThreeVector& p = track->GetPosition();
ph->pex = m.x();
ph->pey = m.y();
ph->pez = m.z();
ph->vex = p.x();
ph->vey = p.y();
ph->vez = p.z();
/// Final update of the particle using the user handler
if ( m_userHandler ) {
m_userHandler->end(track, m_currTrack);
}
// These are candate tracks with a probability to be stored due to their properties:
// - primary particle
// - hits created
// - secondaries
// - above energy threshold
// - to be kept due to creator process
//
m_equivalentTracks[g4_id] = g4_id;
ParticleMap::iterator ip = m_particleMap.find(g4_id);
if ( mask.isSet(G4PARTICLE_PRIMARY) ) {
ph.dump2(outputLevel()-1,name(),"Add Primary",h.id(),ip!=m_particleMap.end());
}
// Create a new MC particle from the current track information saved in the pre-tracking action
Particle* part = 0;
if ( ip==m_particleMap.end() ) part = m_particleMap[g4_id] = new Particle();
else part = (*ip).second;
part->get_data(m_currTrack);
}
else {
// These are tracks without any special properties.
//
// We will not store them on the record, but have to memorise the
// track identifier in order to restore the history for the created hits.
int pid = m_currTrack.g4Parent;
m_equivalentTracks[g4_id] = pid;
// Need to find the last stored particle and OR this particle's mask
// with the mask of the last stored particle
TrackEquivalents::const_iterator iequiv, iend = m_equivalentTracks.end();
ParticleMap::iterator ip;
for(ip=m_particleMap.find(pid); ip == m_particleMap.end(); ip=m_particleMap.find(pid)) {
if ((iequiv=m_equivalentTracks.find(pid)) == iend) break; // ERROR
pid = (*iequiv).second;
}
if ( ip != m_particleMap.end() )
(*ip).second->reason |= track_reason;
else
ph.dump3(outputLevel()+3,name(),"FATAL: No real particle parent present");
/// Pre-event action callback
void Geant4ParticleHandler::beginEvent(const G4Event* event) {
Geant4PrimaryInteraction* interaction = context()->event().extension<Geant4PrimaryInteraction>();
info("+++ Event %d Begin event action. Access event related information.",event->GetEventID());
m_primaryMap = context()->event().extension<Geant4PrimaryMap>();
m_globalParticleID = interaction->nextPID();
m_particleMap.clear();
m_equivalentTracks.clear();
/// Call the user particle handler
if ( m_userHandler ) {
m_userHandler->begin(event);
}
/// Debugging: Dump Geant4 particle map
void Geant4ParticleHandler::dumpMap(const char* tag) const {
for(ParticleMap::const_iterator iend=m_particleMap.end(), i=m_particleMap.begin(); i!=iend; ++i) {
Geant4ParticleHandle((*i).second).dump4(INFO,name(),tag);
}
void Geant4ParticleHandler::endEvent(const G4Event* event) {
int level = outputLevel();
if ( level <= VERBOSE ) dumpMap("Particle");
print("+++ Iteration:%d Tracks:%d Equivalents:%d",++count,m_particleMap.size(),m_equivalentTracks.size());
} while( recombineParents() > 0 );
if ( level <= VERBOSE ) dumpMap("Recombined");
// Rebase the simulated tracks, so that they fit to the generator particles
rebaseSimulatedTracks(0);
if ( level <= DEBUG ) dumpMap("Rebased");
// Consistency check....
checkConsistency();
/// Call the user particle handler
if ( m_userHandler ) {
m_userHandler->end(event);
}
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// Now export the data to the final record.
Geant4ParticleMap* part_map = context()->event().extension<Geant4ParticleMap>();
part_map->adopt(m_particleMap, m_equivalentTracks);
m_primaryMap = 0;
clear();
}
/// Rebase the simulated tracks, so that they fit to the generator particles
void Geant4ParticleHandler::rebaseSimulatedTracks(int ) {
/// No we have to update the map of equivalent tracks and assign the 'equivalentTrack' entry
TrackEquivalents equivalents, orgParticles;
ParticleMap finalParticles;
ParticleMap::const_iterator ipar, iend, i;
int count;
Geant4PrimaryInteraction* interaction = context()->event().extension<Geant4PrimaryInteraction>();
ParticleMap& pm = interaction->particles;
// (1.0) Copy the pre-defined particle mapping for the simulated tracks
// It is assumed the mapping is ZERO based without holes.
for(count = 0, iend=pm.end(), i=pm.begin(); i!=iend; ++i) {
Particle* p = (*i).second;
orgParticles[p->id] = p->id;
finalParticles[p->id] = p;
if ( p->id > count ) count = p->id;
if ( (p->reason&G4PARTICLE_PRIMARY) != G4PARTICLE_PRIMARY ) {
p->addRef();
}
}
// (1.1) Define the new particle mapping for the simulated tracks
for(++count, iend=m_particleMap.end(), i=m_particleMap.begin(); i!=iend; ++i) {
Particle* p = (*i).second;
if ( (p->reason&G4PARTICLE_PRIMARY) != G4PARTICLE_PRIMARY ) {
//if ( orgParticles.find(p->id) == orgParticles.end() ) {
orgParticles[p->id] = count;
finalParticles[count] = p;
p->id = count;
++count;
}
}
// (2) Re-evaluate the corresponding geant4 track equivalents using the new mapping
for(TrackEquivalents::iterator i=m_equivalentTracks.begin(),iend=m_equivalentTracks.end(); i!=iend; ++i) {
int g4_equiv = (*i).first;
ParticleMap::const_iterator ipar;
while( (ipar=m_particleMap.find(g4_equiv)) == m_particleMap.end() ) {
TrackEquivalents::const_iterator iequiv = m_equivalentTracks.find(g4_equiv);
if ( iequiv == iend ) {
break; // ERROR !! Will be handled by printout below because ipar==end()
g4_equiv = (*iequiv).second;
}
if ( ipar != m_particleMap.end() ) {
equivalents[(*i).first] = (*ipar).second->id; // requires (1) !
else
error("+++ No Equivalent particle for track:%d last known is:%d",(*i).second,g4_equiv);
}
// (3) Compute the particle's parents and daughters.
// Replace the original Geant4 track with the
// equivalent particle still present in the record.
for(ParticleMap::const_iterator ipar, iend=m_particleMap.end(), i=m_particleMap.begin(); i!=iend; ++i) {
Particle* p = (*i).second;
if ( p->g4Parent > 0 ) {
int equiv_id = equivalents[p->g4Parent];
if ( (ipar=finalParticles.find(equiv_id)) != finalParticles.end() ) {
Particle* q = (*ipar).second;
q->daughters.insert(p->id);
p->parents.insert(q->id);
}
else {
error("+++ Inconsistency in particle record: Geant4 parent %d "
"of particle %d (equiv:%d) not in record!",
p->g4Parent,p->id,equiv_id);
}
}
}
m_equivalentTracks = equivalents;
m_particleMap = finalParticles;
/// Clean the monte carlo record. Remove all unwanted stuff.
/// This is the core of the object executed at the end of each event action.
int Geant4ParticleHandler::recombineParents() {
set<int> remove;
/// Need to start from BACK, to clean first the latest produced stuff.
/// Otherwise the daughter list of the earlier produced tracks would not be empty!
for(ParticleMap::reverse_iterator i=m_particleMap.rbegin(); i!=m_particleMap.rend(); ++i) {
int g4_id = (*i).first;
Particle* p = (*i).second;
set<int>& daughters = p->daughters;
// Allow the user to force the particle handling either by
// or the reason mask with G4PARTICLE_KEEP_USER or
// to set the reason mask to NULL in order to drop it.
// Note: This may override all other decisions!
if ( m_userHandler ) {
m_userHandler->keepParticle(*p);
}
PropertyMask mask(p->reason);
int id = p->id;
bool secondaries = mask.isSet(G4PARTICLE_HAS_SECONDARIES);
bool tracker_track = mask.isSet(G4PARTICLE_CREATED_TRACKER_HIT);
bool calo_track = mask.isSet(G4PARTICLE_CREATED_CALORIMETER_HIT);
bool hits_produced = mask.isSet(G4PARTICLE_CREATED_HIT);
bool low_energy = !mask.isSet(G4PARTICLE_ABOVE_ENERGY_THRESHOLD);
bool keep_process = mask.isSet(G4PARTICLE_KEEP_PROCESS);
bool keep_parent = mask.isSet(G4PARTICLE_KEEP_PARENT);
if ( id == break_trackID ) { // Used for debugging to set break point
remove_me = false;
if ( mask.isSet(G4PARTICLE_KEEP_USER) ) {
/// If user decides it must be kept, it MUST be kept!
mask.set(G4PARTICLE_KEEP_USER);
continue;
}
else if ( mask.isSet(G4PARTICLE_PRIMARY) ) {
/// Primary particles MUST be kept!
continue;
}
else if ( mask.isSet(G4PARTICLE_KEEP_ALWAYS) ) {
continue;
}
else if ( keep_parent ) {
ParticleMap::iterator ip = m_particleMap.find(p->g4Parent);
if ( ip != m_particleMap.end() ) {
Particle* parent_part = (*ip).second;
PropertyMask parent_mask(parent_part->reason);
if ( parent_mask.isSet(G4PARTICLE_ABOVE_ENERGY_THRESHOLD) ) {
parent_mask.set(G4PARTICLE_KEEP_PARENT);
continue;
}
}
// Low energy stuff. Remove it. Reassign to parent.
//remove_me = true;
}
/// Remove this track if it has not created a hit and the energy is below threshold
if ( mask.isNull() || (secondaries && low_energy && !hits_produced) ) {
remove_me = true;
}
/// Remove this track if the energy is below threshold. Reassign hits to parent.
else if ( !hits_produced && low_energy ) {
remove_me = true;
}
/// Remove this track if the origine is in the calorimeter. Reassign hits to parent.
else if ( !tracker_track && calo_track && low_energy ) {
remove_me = true;
}
else {
//printout(INFO,name(),"+++ Track: %d should be kept for no obvious reason....",id);
}
/// Remove this track from the list and also do the cleanup in the parent's children list
if ( remove_me ) {
ParticleMap::iterator ip = m_particleMap.find(p->g4Parent);
remove.insert(g4_id);
m_equivalentTracks[g4_id] = p->g4Parent;
if ( ip != m_particleMap.end() ) {
Particle* parent_part = (*ip).second;
PropertyMask(parent_part->reason).set(mask.value());
parent_part->steps += p->steps;
parent_part->secondaries += p->secondaries;
/// Update of the particle using the user handler
if ( m_userHandler ) {
m_userHandler->combine(*p, *parent_part);
}
}
}
}
for(set<int>::const_iterator r=remove.begin(); r!=remove.end();++r) {
ParticleMap::iterator ir = m_particleMap.find(*r);
if ( ir != m_particleMap.end() ) {
(*ir).second->release();
m_particleMap.erase(ir);
}
}
return int(remove.size());
/// Check the record consistency
void Geant4ParticleHandler::checkConsistency() const {
int num_errors = 0;
/// First check the consistency of the particle map itself
for(ParticleMap::const_iterator j, i=m_particleMap.begin(); i!=m_particleMap.end(); ++i) {
Particle* p = (*i).second;
PropertyMask mask(p->reason);
PropertyMask status(p->status);
set<int>& daughters = p->daughters;
// For all particles, the set of daughters must be contained in the record.
for(set<int>::const_iterator id=daughters.begin(); id!=daughters.end(); ++id) {
int id_dau = *id;
if ( (j=m_particleMap.find(id_dau)) == m_particleMap.end() ) {
error("+++ Particle:%d Daughter %d is not in particle map!",p->id,id_dau);
// We assume that particles from the generator have consistent parents
// For all other particles except the primaries, the parent must be contained in the record.
if ( !mask.isSet(G4PARTICLE_PRIMARY) && !status.anySet(G4PARTICLE_GEN_GENERATOR) ) {
int parent_id = equivalentTrack(p->g4Parent);
bool in_map = (j=m_particleMap.find(parent_id)) != m_particleMap.end();
bool in_parent_list = p->parents.find(parent_id) != p->parents.end();
char parent_list[1024];
parent_list[0] = 0;
if ( !in_map || !in_parent_list ) {
for(set<int>::const_iterator ip=p->parents.begin(); ip!=p->parents.end();++ip)
::snprintf(parent_list+strlen(parent_list),sizeof(parent_list)-strlen(parent_list),"%d ",*ip);
error("+++ Particle:%d Parent %d (G4id:%d) In record:%s In parent list:%s [%s]",
p->id,parent_id,p->g4Parent,yes_no(in_map),yes_no(in_parent_list),parent_list);
/// No we have to check the consistency of the map of equivalent tracks used to assign the
/// proper MC particle to the created hits
for(TrackEquivalents::const_iterator i=m_equivalentTracks.begin(), iend=m_equivalentTracks.end(); i!=iend; ++i) {
int g4_id = (*i).first;
int equiv_id = equivalentTrack(g4_id);
if ( equiv_id < 0 ) {
except("+++ Consistency check failed. Found %d problems.",num_errors);
/// Get proper equivalent track from the particle map according to the given geant4 track ID
int Geant4ParticleHandler::equivalentTrack(int g4_id) const {
int equiv_id = g4_id;
if ( g4_id != 0 ) {
TrackEquivalents::const_iterator iequiv = m_equivalentTracks.find(equiv_id);
if ( iequiv != m_equivalentTracks.end() ) return (*iequiv).second;
return -1;
Markus Frank
committed
/// Access the equivalent track id (shortcut to the usage of TrackEquivalents)
int Geant4ParticleHandler::particleID(int track, bool) const {
return equivalentTrack(track);
}