-
MarkusFrankATcernch authored
Co-Authored-By:
Andre Sailer <andre.philippe.sailer@cern.ch>
6584b882
Geant4ShapeConverter.cpp 9.63 KiB
//==========================================================================
// AIDA Detector description implementation
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
// All rights reserved.
//
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
//
// Author : M.Frank
//
//==========================================================================
// Framework include files
#include "DD4hep/Shapes.h"
#include "DD4hep/Printout.h"
#include "DD4hep/DD4hepUnits.h"
#include "Geant4ShapeConverter.h"
// ROOT includes
#include "TClass.h"
#include "TGeoMatrix.h"
#include "TGeoBoolNode.h"
#include "TGeoScaledShape.h"
// Geant4 include files
#include "G4Box.hh"
#include "G4Trd.hh"
#include "G4Tubs.hh"
#include "G4Trap.hh"
#include "G4Cons.hh"
#include "G4Hype.hh"
#include "G4Torus.hh"
#include "G4Sphere.hh"
#include "G4CutTubs.hh"
#include "G4Polycone.hh"
#include "G4Polyhedra.hh"
#include "G4Paraboloid.hh"
#include "G4Ellipsoid.hh"
#include "G4GenericTrap.hh"
#include "G4ExtrudedSolid.hh"
#include "G4EllipticalTube.hh"
// C/C++ include files
using namespace std;
using namespace dd4hep::detail;
namespace units = dd4hep;
/// Namespace for the AIDA detector description toolkit
namespace dd4hep {
/// Namespace for the Geant4 based simulation part of the AIDA detector description toolkit
namespace sim {
static const double CM_2_MM = (CLHEP::centimeter/dd4hep::centimeter);
/// Convert a specific TGeo shape into the geant4 equivalent
template <typename T> G4VSolid* convertShape(const TGeoShape* shape) {
if ( shape ) {
dd4hep::except("convertShape","Unsupported shape: %s",shape->IsA()->GetName());
}
dd4hep::except("convertShape","Invalid shape conversion requested.");
return 0;
}
template <> G4VSolid* convertShape<TGeoShapeAssembly>(const TGeoShape* /* shape */) {
return 0;
}
template <> G4VSolid* convertShape<TGeoBBox>(const TGeoShape* shape) {
const TGeoBBox* sh = (const TGeoBBox*) shape;
return new G4Box(sh->GetName(), sh->GetDX() * CM_2_MM, sh->GetDY() * CM_2_MM, sh->GetDZ() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoTube>(const TGeoShape* shape) {
const TGeoTube* sh = (const TGeoTube*) shape;
return new G4Tubs(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetDz() * CM_2_MM, 0, 2. * M_PI);
}
template <> G4VSolid* convertShape<TGeoTubeSeg>(const TGeoShape* shape) {
const TGeoTubeSeg* sh = (const TGeoTubeSeg*) shape;
return new G4Tubs(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetDz() * CM_2_MM,
sh->GetPhi1() * DEGREE_2_RAD, (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoCtub>(const TGeoShape* shape) {
const TGeoCtub* sh = (const TGeoCtub*) shape;
const Double_t* ln = sh->GetNlow();
const Double_t* hn = sh->GetNhigh();
G4ThreeVector lowNorm (ln[0], ln[1], ln[2]);
G4ThreeVector highNorm(hn[0], hn[1], hn[2]);
return new G4CutTubs(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetDz() * CM_2_MM,
sh->GetPhi1() * DEGREE_2_RAD, (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD, lowNorm, highNorm);
}
template <> G4VSolid* convertShape<TGeoEltu>(const TGeoShape* shape) {
const TGeoEltu* sh = (const TGeoEltu*) shape;
return new G4EllipticalTube(sh->GetName(),sh->GetA() * CM_2_MM, sh->GetB() * CM_2_MM, sh->GetDz() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoTrd1>(const TGeoShape* shape) {
const TGeoTrd1* sh = (const TGeoTrd1*) shape;
return new G4Trd(sh->GetName(), sh->GetDx1() * CM_2_MM, sh->GetDx2() * CM_2_MM, sh->GetDy() * CM_2_MM, sh->GetDy() * CM_2_MM,
sh->GetDz() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoTrd2>(const TGeoShape* shape) {
const TGeoTrd2* sh = (const TGeoTrd2*) shape;
return new G4Trd(sh->GetName(), sh->GetDx1() * CM_2_MM, sh->GetDx2() * CM_2_MM, sh->GetDy1() * CM_2_MM, sh->GetDy2() * CM_2_MM,
sh->GetDz() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoHype>(const TGeoShape* shape) {
const TGeoHype* sh = (const TGeoHype*) shape;
return new G4Hype(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM,
sh->GetStIn() * DEGREE_2_RAD, sh->GetStOut() * DEGREE_2_RAD,
sh->GetDz() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoArb8>(const TGeoShape* shape) {
vector<G4TwoVector> vertices;
TGeoArb8* sh = (TGeoArb8*) shape;
Double_t* vtx_xy = sh->GetVertices();
for ( size_t i=0; i<8; ++i, vtx_xy +=2 )
vertices.emplace_back(vtx_xy[0] * CM_2_MM, vtx_xy[1] * CM_2_MM);
return new G4GenericTrap(sh->GetName(), sh->GetDz() * CM_2_MM, vertices);
}
template <> G4VSolid* convertShape<TGeoXtru>(const TGeoShape* shape) {
const TGeoXtru* sh = (const TGeoXtru*) shape;
size_t nz = sh->GetNz();
vector<G4ExtrudedSolid::ZSection> z;
vector<G4TwoVector> polygon;
z.reserve(nz);
polygon.reserve(nz);
for(size_t i=0; i<nz; ++i) {
z.emplace_back(G4ExtrudedSolid::ZSection(sh->GetZ(i) * CM_2_MM,
{sh->GetXOffset(i), sh->GetYOffset(i)},
sh->GetScale(i)));
polygon.emplace_back(G4TwoVector(sh->GetX(i) * CM_2_MM,sh->GetY(i) * CM_2_MM));
}
return new G4ExtrudedSolid(sh->GetName(), polygon, z);
}
template <> G4VSolid* convertShape<TGeoPgon>(const TGeoShape* shape) {
const TGeoPgon* sh = (const TGeoPgon*) shape;
double phi_start = sh->GetPhi1() * DEGREE_2_RAD;
double phi_total = (sh->GetDphi() + sh->GetPhi1()) * DEGREE_2_RAD;
vector<double> rmin, rmax, z;
for (Int_t i = 0; i < sh->GetNz(); ++i) {
rmin.emplace_back(sh->GetRmin(i) * CM_2_MM);
rmax.emplace_back(sh->GetRmax(i) * CM_2_MM);
z.emplace_back(sh->GetZ(i) * CM_2_MM);
}
return new G4Polyhedra(sh->GetName(), phi_start, phi_total, sh->GetNedges(), sh->GetNz(), &z[0], &rmin[0], &rmax[0]);
}
template <> G4VSolid* convertShape<TGeoPcon>(const TGeoShape* shape) {
const TGeoPcon* sh = (const TGeoPcon*) shape;
double phi_start = sh->GetPhi1() * DEGREE_2_RAD;
double phi_total = (sh->GetDphi() + sh->GetPhi1()) * DEGREE_2_RAD;
vector<double> rmin, rmax, z;
for (Int_t i = 0; i < sh->GetNz(); ++i) {
rmin.emplace_back(sh->GetRmin(i) * CM_2_MM);
rmax.emplace_back(sh->GetRmax(i) * CM_2_MM);
z.emplace_back(sh->GetZ(i) * CM_2_MM);
}
return new G4Polycone(sh->GetName(), phi_start, phi_total, sh->GetNz(), &z[0], &rmin[0], &rmax[0]);
}
template <> G4VSolid* convertShape<TGeoCone>(const TGeoShape* shape) {
const TGeoCone* sh = (const TGeoCone*) shape;
return new G4Cons(sh->GetName(), sh->GetRmin1() * CM_2_MM, sh->GetRmax1() * CM_2_MM, sh->GetRmin2() * CM_2_MM,
sh->GetRmax2() * CM_2_MM, sh->GetDz() * CM_2_MM, 0.0, 2.*M_PI);
}
template <> G4VSolid* convertShape<TGeoConeSeg>(const TGeoShape* shape) {
const TGeoConeSeg* sh = (const TGeoConeSeg*) shape;
return new G4Cons(sh->GetName(), sh->GetRmin1() * CM_2_MM, sh->GetRmax1() * CM_2_MM,
sh->GetRmin2() * CM_2_MM, sh->GetRmax2() * CM_2_MM,
sh->GetDz() * CM_2_MM,
sh->GetPhi1() * DEGREE_2_RAD, (sh->GetPhi2()-sh->GetPhi1()) * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoParaboloid>(const TGeoShape* shape) {
const TGeoParaboloid* sh = (const TGeoParaboloid*) shape;
return new G4Paraboloid(sh->GetName(), sh->GetDz() * CM_2_MM, sh->GetRlo() * CM_2_MM, sh->GetRhi() * CM_2_MM);
}
template <> G4VSolid* convertShape<TGeoSphere>(const TGeoShape* shape) {
const TGeoSphere* sh = (const TGeoSphere*) shape;
return new G4Sphere(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetPhi1() * DEGREE_2_RAD,
sh->GetPhi2() * DEGREE_2_RAD, sh->GetTheta1() * DEGREE_2_RAD, sh->GetTheta2() * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoTorus>(const TGeoShape* shape) {
const TGeoTorus* sh = (const TGeoTorus*) shape;
return new G4Torus(sh->GetName(), sh->GetRmin() * CM_2_MM, sh->GetRmax() * CM_2_MM, sh->GetR() * CM_2_MM,
sh->GetPhi1() * DEGREE_2_RAD, sh->GetDphi() * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<TGeoTrap>(const TGeoShape* shape) {
const TGeoTrap* sh = (const TGeoTrap*) shape;
return new G4Trap(sh->GetName(), sh->GetDz() * CM_2_MM, sh->GetTheta() * DEGREE_2_RAD, sh->GetPhi() * DEGREE_2_RAD,
sh->GetH1() * CM_2_MM, sh->GetBl1() * CM_2_MM, sh->GetTl1() * CM_2_MM, sh->GetAlpha1() * DEGREE_2_RAD,
sh->GetH2() * CM_2_MM, sh->GetBl2() * CM_2_MM, sh->GetTl2() * CM_2_MM, sh->GetAlpha2() * DEGREE_2_RAD);
}
template <> G4VSolid* convertShape<G4GenericTrap>(const TGeoShape* shape) {
vector<G4TwoVector> vertices;
TGeoTrap* sh = (TGeoTrap*) shape;
Double_t* vtx_xy = sh->GetVertices();
for ( size_t i=0; i<8; ++i, vtx_xy +=2 )
vertices.emplace_back(G4TwoVector(vtx_xy[0] * CM_2_MM,vtx_xy[1] * CM_2_MM));
return new G4GenericTrap(sh->GetName(), sh->GetDz() * CM_2_MM, vertices);
}
} // End namespace sim
} // End namespace dd4hep