Newer
Older
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// ---------------------------------------------------------------------------
// Includes
// ---------------------------------------------------------------------------
#include <xercesc/util/Base64.hpp>
#include <xercesc/util/XMLString.hpp>
#include <xercesc/util/Janitor.hpp>
#include <xercesc/framework/MemoryManager.hpp>
// ---------------------------------------------------------------------------
// constants
// ---------------------------------------------------------------------------
static const int FOURBYTE = 4;
// ---------------------------------------------------------------------------
// class data member
// ---------------------------------------------------------------------------
// the base64 alphabet according to definition in RFC 2045
const XMLByte Base64::base64Alphabet[] = {
chLatin_A, chLatin_B, chLatin_C, chLatin_D, chLatin_E,
chLatin_F, chLatin_G, chLatin_H, chLatin_I, chLatin_J,
chLatin_K, chLatin_L, chLatin_M, chLatin_N, chLatin_O,
chLatin_P, chLatin_Q, chLatin_R, chLatin_S, chLatin_T,
chLatin_U, chLatin_V, chLatin_W, chLatin_X, chLatin_Y, chLatin_Z,
chLatin_a, chLatin_b, chLatin_c, chLatin_d, chLatin_e,
chLatin_f, chLatin_g, chLatin_h, chLatin_i, chLatin_j,
chLatin_k, chLatin_l, chLatin_m, chLatin_n, chLatin_o,
chLatin_p, chLatin_q, chLatin_r, chLatin_s, chLatin_t,
chLatin_u, chLatin_v, chLatin_w, chLatin_x, chLatin_y, chLatin_z,
chDigit_0, chDigit_1, chDigit_2, chDigit_3, chDigit_4,
chDigit_5, chDigit_6, chDigit_7, chDigit_8, chDigit_9,
chPlus, chForwardSlash, chNull
// This is an inverse table for base64 decoding. So, if
// base64Alphabet[17] = 'R', then base64Inverse['R'] = 17.
//
// For characters not in base64Alphabet then
// base64Inverse[ch] = 0xFF.
const XMLByte Base64::base64Inverse[BASELENGTH] =
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3E, 0xFF, 0xFF, 0xFF, 0x3F,
0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,
0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
const XMLByte Base64::base64Padding = chEqual;
* . For memory allocated for result returned to caller (external memory),
* the plugged memory manager is used if it is provided, otherwise global
* new used to retain the pre-memory-manager behaviour.
* . For memory allocated for temperary buffer (internal memory),
* XMLPlatformUtils::fgMemoryManager is used.
static void* getExternalMemory( MemoryManager* const allocator
, XMLSize_t const sizeToAllocate)
{
return allocator ? allocator->allocate(sizeToAllocate)
: ::operator new(sizeToAllocate);
/***
* internal memory is deallocated by janitorArray
*/
static void returnExternalMemory( MemoryManager* const allocator
, void* buffer)
* Canonical-base64Binary ::= (B64line* B64lastline)?
*
* B64line ::= B64x15 B64x15 B64x15 B64x15 B64x15 B64 #xA
* 76 Base64 characters followed by newline
*
* B64x15 ::= B64 B64 B64 B64 B64
* B64 B64 B64 B64 B64
* B64 B64 B64 B64 B64
*
* B64lastline ::= B64x4? B64x4? B64x4? B64x4?
* B64x4? B64x4? B64x4? B64x4?
* B64x4? B64x4? B64x4? B64x4?
* B64x4? B64x4? B64x4? B64x4?
* B64x4? B64x4?
* (B64x4 | (B64 B64 B16 '=') | (B64 B04 '=='))
* #xA
*
* B64x4 ::= B64 B64 B64 B64
* B04 ::= [AQgw]
* B16 ::= [AEIMQUYcgkosw048]
*/
// number of quadruplets per one line ( must be >1 and <19 )
const unsigned int Base64::quadsPerLine = 15;
XMLByte* Base64::encode(const XMLByte* const inputData
, const XMLSize_t inputLength
, XMLSize_t* outputLength
int quadrupletCount = ( (int)inputLength + 2 ) / 3;
if (quadrupletCount == 0)
return 0;
// number of rows in encoded stream ( including the last one )
int lineCount = ( quadrupletCount + quadsPerLine-1 ) / quadsPerLine;
//
// convert the triplet(s) to quadruplet(s)
//
XMLByte b1, b2, b3, b4; // base64 binary codes ( 0..63 )
XMLSize_t inputIndex = 0;
XMLSize_t outputIndex = 0;
XMLByte *encodedData = (XMLByte*) getExternalMemory(memMgr, (quadrupletCount*FOURBYTE+lineCount+1) * sizeof(XMLByte));
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
//
// Process all quadruplet(s) except the last
//
int quad = 1;
for (; quad <= quadrupletCount-1; quad++ )
{
// read triplet from the input stream
split1stOctet( inputData[ inputIndex++ ], b1, b2 );
split2ndOctet( inputData[ inputIndex++ ], b2, b3 );
split3rdOctet( inputData[ inputIndex++ ], b3, b4 );
// write quadruplet to the output stream
encodedData[ outputIndex++ ] = base64Alphabet[ b1 ];
encodedData[ outputIndex++ ] = base64Alphabet[ b2 ];
encodedData[ outputIndex++ ] = base64Alphabet[ b3 ];
encodedData[ outputIndex++ ] = base64Alphabet[ b4 ];
if (( quad % quadsPerLine ) == 0 )
encodedData[ outputIndex++ ] = chLF;
}
//
// process the last Quadruplet
//
// first octet is present always, process it
split1stOctet( inputData[ inputIndex++ ], b1, b2 );
encodedData[ outputIndex++ ] = base64Alphabet[ b1 ];
if( inputIndex < inputLength )
{
// second octet is present, process it
split2ndOctet( inputData[ inputIndex++ ], b2, b3 );
encodedData[ outputIndex++ ] = base64Alphabet[ b2 ];
if( inputIndex < inputLength )
{
// third octet present, process it
// no PAD e.g. 3cQl
split3rdOctet( inputData[ inputIndex++ ], b3, b4 );
encodedData[ outputIndex++ ] = base64Alphabet[ b3 ];
encodedData[ outputIndex++ ] = base64Alphabet[ b4 ];
}
else
{
// third octet not present
// one PAD e.g. 3cQ=
encodedData[ outputIndex++ ] = base64Alphabet[ b3 ];
encodedData[ outputIndex++ ] = base64Padding;
}
}
else
{
// second octet not present
// two PADs e.g. 3c==
encodedData[ outputIndex++ ] = base64Alphabet[ b2 ];
encodedData[ outputIndex++ ] = base64Padding;
encodedData[ outputIndex++ ] = base64Padding;
}
// write out end of the last line
encodedData[ outputIndex++ ] = chLF;
// write out end of string
encodedData[ outputIndex ] = 0;
return encodedData;
}
//
// delete the buffer allocated by decode() if
// decoding is successfully done.
//
// In previous version, we use XMLString::strLen(decodedData)
// to get the length, this will fail for test case containing
// consequtive "A", such "AAFF", or "ab56AA56". Instead of
// returning 3/6, we have 0 and 3, indicating that "AA", after
// decoded, is interpreted as <null> by the strLen().
//
// Since decode() has track of length of the decoded data, we
// will get this length from decode(), instead of strLen().
//
int Base64::getDataLength(const XMLCh* const inputData
, MemoryManager* const manager
, Conformance conform )
XMLSize_t retLen = 0;
David Abram Cargill
committed
XMLByte* decodedData = decodeToXMLByte(inputData, &retLen, manager, conform);
David Abram Cargill
committed
returnExternalMemory(manager, decodedData);
return (int)retLen;
XMLByte* Base64::decode(const XMLByte* const inputData
, XMLSize_t* decodedLength
, MemoryManager* const memMgr
, Conformance conform )
{
XMLByte* canRepInByte = 0;
XMLByte* retStr = decode(
inputData
, decodedLength
, canRepInByte
, memMgr
, conform);
/***
* Release the canRepData
*/
if (retStr)
returnExternalMemory(memMgr, canRepInByte);
return retStr;
}
David Abram Cargill
committed
XMLByte* Base64::decodeToXMLByte(const XMLCh* const inputData
, XMLSize_t* decodedLen
, MemoryManager* const memMgr
, Conformance conform )
David Abram Cargill
committed
{
if (!inputData || !*inputData)
return 0;
David Abram Cargill
committed
/***
* Move input data to a XMLByte buffer
*/
XMLSize_t srcLen = XMLString::stringLen(inputData);
David Abram Cargill
committed
XMLByte *dataInByte = (XMLByte*) getExternalMemory(memMgr, (srcLen+1) * sizeof(XMLByte));
ArrayJanitor<XMLByte> janFill(dataInByte, memMgr ? memMgr : XMLPlatformUtils::fgMemoryManager);
for (XMLSize_t i = 0; i < srcLen; i++)
dataInByte[i] = (XMLByte)inputData[i];
David Abram Cargill
committed
David Abram Cargill
committed
/***
* Forward to the actual decoding method to do the decoding
*/
*decodedLen = 0;
return decode(dataInByte, decodedLen, memMgr, conform);
David Abram Cargill
committed
}
/***
* E2-54
*
* Canonical-base64Binary ::= (B64 B64 B64 B64)*((B64 B64 B16 '=')|(B64 B04 '=='))?
* B04 ::= [AQgw]
* B16 ::= [AEIMQUYcgkosw048]
* B64 ::= [A-Za-z0-9+/]
*
***/
XMLCh* Base64::getCanonicalRepresentation(const XMLCh* const inputData
, MemoryManager* const memMgr
, Conformance conform)
{
if (!inputData || !*inputData)
return 0;
/***
* Move input data to a XMLByte buffer
*/
XMLSize_t srcLen = XMLString::stringLen(inputData);
XMLByte *dataInByte = (XMLByte*) getExternalMemory(memMgr, (srcLen+1) * sizeof(XMLByte));
ArrayJanitor<XMLByte> janFill(dataInByte, memMgr ? memMgr : XMLPlatformUtils::fgMemoryManager);
for (XMLSize_t i = 0; i < srcLen; i++)
dataInByte[i] = (XMLByte)inputData[i];
/***
* Forward to the actual decoding method to do the decoding
*/
XMLSize_t decodedLength = 0;
XMLByte* canRepInByte = 0;
XMLByte* retStr = decode(
dataInByte
, &decodedLength
, canRepInByte
, memMgr
, conform);
if (!retStr)
return 0;
/***
* Move canonical representation to a XMLCh buffer to return
*/
XMLSize_t canRepLen = XMLString::stringLen((char*)canRepInByte);
XMLCh *canRepData = (XMLCh*) getExternalMemory(memMgr, (canRepLen + 1) * sizeof(XMLCh));
for (XMLSize_t j = 0; j < canRepLen; j++)
canRepData[j] = (XMLCh)canRepInByte[j];
/***
* Release the memory allocated in the actual decoding method
*/
returnExternalMemory(memMgr, retStr);
returnExternalMemory(memMgr, canRepInByte);
return canRepData;
}
// -----------------------------------------------------------------------
// Helper methods
// -----------------------------------------------------------------------
//
// return 0(null) if invalid data found.
// return the buffer containning decoded data otherwise
// the caller is responsible for the de-allocation of the
//
// temporary data, rawInputData, is ALWAYS released by this function.
//
/***
* E2-9
*
* Base64Binary ::= S? B64quartet* B64final?
*
* B64quartet ::= B64 S? B64 S? B64 S? B64 S?
*
* B64final ::= B64 S? B04 S? '=' S? '=' S?
* | B64 S? B64 S? B16 S? '=' S?
*
* B04 ::= [AQgw]
* B16 ::= [AEIMQUYcgkosw048]
* B64 ::= [A-Za-z0-9+/]
*
*
* E2-54
*
* Base64Binary ::= ((B64S B64S B64S B64S)*
* ((B64S B64S B64S B64) |
* (B64S B64S B16S '=') |
* (B64S B04S '=' #x20? '=')))?
*
* B64S ::= B64 #x20?
* B16S ::= B16 #x20?
* B04S ::= B04 #x20?
*
*
* Note that this grammar requires the number of non-whitespace characters
* in the lexical form to be a multiple of four, and for equals signs to
* appear only at the end of the lexical form; strings which do not meet these
* constraints are not legal lexical forms of base64Binary because they
* cannot successfully be decoded by base64 decoders.
*
* Note:
* The above definition of the lexical space is more restrictive than that given
* in [RFC 2045] as regards whitespace -- this is not an issue in practice. Any
* string compatible with the RFC can occur in an element or attribute validated
* by this type, because the whiteSpace facet of this type is fixed to collapse,
* which means that all leading and trailing whitespace will be stripped, and all
* internal whitespace collapsed to single space characters, before the above grammar
* is enforced.
*
XMLByte* Base64::decode ( const XMLByte* const inputData
, XMLSize_t* decodedLength
, MemoryManager* const memMgr
, Conformance conform
)
if ((!inputData) || (!*inputData))
David Abram Cargill
committed
// remove all XML whitespaces from the base64Data
XMLSize_t inputLength = XMLString::stringLen( (const char*)inputData );
David Abram Cargill
committed
XMLByte* rawInputData = (XMLByte*) getExternalMemory(memMgr, (inputLength+1) * sizeof(XMLByte));
ArrayJanitor<XMLByte> jan(rawInputData, memMgr ? memMgr : XMLPlatformUtils::fgMemoryManager);
XMLSize_t inputIndex = 0;
XMLSize_t rawInputLength = 0;
bool inWhiteSpace = false;
case Conf_RFC2045:
while ( inputIndex < inputLength )
if (!XMLChar1_0::isWhitespace(inputData[inputIndex]))
{
rawInputData[ rawInputLength++ ] = inputData[ inputIndex ];
}
// RFC2045 does not explicitly forbid more than ONE whitespace
// before, in between, or after base64 octects.
// Besides, S? allows more than ONE whitespace as specified in the production
// [3] S ::= (#x20 | #x9 | #xD | #xA)+
// therefore we do not detect multiple ws
inputIndex++;
break;
case Conf_Schema:
// no leading #x20
if (chSpace == inputData[inputIndex])
return 0;
while ( inputIndex < inputLength )
if (chSpace != inputData[inputIndex])
{
rawInputData[ rawInputLength++ ] = inputData[ inputIndex ];
inWhiteSpace = false;
}
{
if (inWhiteSpace)
return 0; // more than 1 #x20 encountered
else
inWhiteSpace = true;
}
inputIndex++;
// no trailing #x20
if (inWhiteSpace)
return 0;
break;
default:
break;
//now rawInputData contains canonical representation
//if the data is valid Base64
rawInputData[ rawInputLength ] = 0;
// the length of raw data should be divisible by four
if (( rawInputLength % FOURBYTE ) != 0 )
return 0;
int quadrupletCount = (int)rawInputLength / FOURBYTE;
if ( quadrupletCount == 0 )
return 0;
//
// convert the quadruplet(s) to triplet(s)
//
XMLByte d1, d2, d3, d4; // base64 characters
XMLByte b1, b2, b3, b4; // base64 binary codes ( 0..64 )
XMLSize_t rawInputIndex = 0;
XMLSize_t outputIndex = 0;
XMLByte *decodedData = (XMLByte*) getExternalMemory(memMgr, (quadrupletCount*3+1) * sizeof(XMLByte));
//
// Process all quadruplet(s) except the last
//
int quad = 1;
for (; quad <= quadrupletCount-1; quad++ )
{
// read quadruplet from the input stream
if (!isData( (d1 = rawInputData[ rawInputIndex++ ]) ) ||
!isData( (d2 = rawInputData[ rawInputIndex++ ]) ) ||
!isData( (d3 = rawInputData[ rawInputIndex++ ]) ) ||
!isData( (d4 = rawInputData[ rawInputIndex++ ]) ))
{
// if found "no data" just return NULL
returnExternalMemory(memMgr, decodedData);
return 0;
}
b1 = base64Inverse[ d1 ];
b2 = base64Inverse[ d2 ];
b3 = base64Inverse[ d3 ];
b4 = base64Inverse[ d4 ];
// write triplet to the output stream
decodedData[ outputIndex++ ] = set1stOctet(b1, b2);
decodedData[ outputIndex++ ] = set2ndOctet(b2, b3);
decodedData[ outputIndex++ ] = set3rdOctet(b3, b4);
}
//
// process the last Quadruplet
//
// first two octets are present always, process them
if (!isData( (d1 = rawInputData[ rawInputIndex++ ]) ) ||
!isData( (d2 = rawInputData[ rawInputIndex++ ]) ))
{
// if found "no data" just return NULL
returnExternalMemory(memMgr, decodedData);
b2 = base64Inverse[ d2 ];
// try to process last two octets
d3 = rawInputData[ rawInputIndex++ ];
d4 = rawInputData[ rawInputIndex++ ];
{
// two PAD e.g. 3c==
if ((b2 & 0xf) != 0) // last 4 bits should be zero
{
returnExternalMemory(memMgr, decodedData);
return 0;
}
decodedData[ outputIndex++ ] = set1stOctet(b1, b2);
}
// one PAD e.g. 3cQ=
b3 = base64Inverse[ d3 ];
if (( b3 & 0x3 ) != 0 ) // last 2 bits should be zero
{
returnExternalMemory(memMgr, decodedData);
return 0;
}
decodedData[ outputIndex++ ] = set1stOctet( b1, b2 );
decodedData[ outputIndex++ ] = set2ndOctet( b2, b3 );
// an error like "3c[Pad]r", "3cdX", "3cXd", "3cXX" where X is non data
returnExternalMemory(memMgr, decodedData);
// no PAD e.g 3cQl
b3 = base64Inverse[ d3 ];
b4 = base64Inverse[ d4 ];
decodedData[ outputIndex++ ] = set1stOctet( b1, b2 );
decodedData[ outputIndex++ ] = set2ndOctet( b2, b3 );
decodedData[ outputIndex++ ] = set3rdOctet( b3, b4 );
}
// write out the end of string
//allow the caller to have access to the canonical representation
jan.release();
canRepData = rawInputData;
return (base64Inverse[octet]!=(XMLByte)-1);