Newer
Older
from multikeydict.nestedmkdict import NestedMKDict
from multikeydict.visitor import NestedMKDictVisitor
from typing import Union, Tuple, List, Optional
pd.set_option('display.max_colwidth', 100)
from dagflow.graph import Graph
from dagflow.graphviz import savegraph
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
class ParametersVisitor(NestedMKDictVisitor):
__slots__ = ('_kwargs', '_data', '_localdata', '_path')
_kwargs: dict
_data: list
_localdata: list
_path: tuple
def __init__(self, kwargs: dict):
self._kwargs = kwargs
@property
def data(self):
return self._data
def start(self, dct):
self._data = []
self._path = ()
def enterdict(self, k, v):
if not k:
return
self._path = k
self._localdata = []
def visit(self, key, value):
try:
dct = value.to_dict(**self._kwargs)
except AttributeError:
return
subkey = key[len(self._path):]
subkeystr = '.'.join(subkey)
if self._path:
dct['path'] = f'.. {subkeystr}'
else:
dct['path'] = subkeystr
self._localdata.append(dct)
def exitdict(self, k, v):
if self._localdata:
self._data.append({
'path': f"[{'.'.join(self._path)}]"
})
self._data.extend(self._localdata)
self._localdata = []
self._path = ()
def stop(self, dct):
pass
return self.visit(ParametersVisitor(kwargs)).data
def to_df(self, *, columns: Optional[List[str]]=None, **kwargs) -> DataFrame:
dct = self.to_dict(**kwargs)
if columns is None:
def to_string(self, **kwargs) -> str:
df = self.to_df()
return df.to_string(**kwargs)
def to_table(self, *, df_kwargs: dict={}, **kwargs) -> str:
df = self.to_df(**df_kwargs)
kwargs.setdefault('headers', df.columns)
ret = tabulate(df, **kwargs)
return ret
def to_latex(self, *, return_df: bool=False, **kwargs) -> Union[str, Tuple[str, DataFrame]]:
df = self.to_df(label_from='latex', **kwargs)
tex = df.to_latex(escape=False)
storage = ParametersWrapper({}, sep='.')
datasource = Path('data/dayabay-v0')
('s', 'site'): ('EH1', 'EH2', 'EH3'),
('d', 'detector'): ('AD11', 'AD12', 'AD21', 'AD22', 'AD31', 'AD32', 'AD33', 'AD34'),
('p', 'period'): ('6AD', '8AD', '7AD'),
('r', 'reactor'): ('DB1', 'DB2', 'LA1', 'LA2', 'LA3', 'LA4'),
('i', 'isotope'): ('U235', 'U238', 'Pu239', 'Pu241'),
('b', 'background'): ('acc', 'lihe', 'fastn', 'amc', 'alphan'),
})
idx_rd= index.sub(('r', 'd'))
idx_ri= index.sub(('r', 'i'))
list_dr = idx_rd.values
list_reactors_isotopes = idx_ri.values
with Graph(close=True) as g:
storage ^= load_parameters({'path': 'ibd' , 'load': datasource/'parameters/pdg2012.yaml'})
storage ^= load_parameters({ 'load': datasource/'parameters/baselines.yaml'})
storage ^= load_parameters({'path': 'detector' , 'load': datasource/'parameters/detector_nprotons_correction.yaml'})
storage ^= load_parameters({ 'load': datasource/'parameters/detector_eres.yaml'})
storage ^= load_parameters({'path': 'reactor' , 'load': datasource/'parameters/reactor_thermal_power_nominal.yaml', 'replicate': list_reactors })
storage ^= load_parameters({'path': 'reactor' , 'load': datasource/'parameters/offequilibrium_correction.yaml', 'replicate': list_reactors_isotopes })
nuisanceall = Sum('nuisance total')
storage['stat.nuisance.all'] = nuisanceall
(output for output in storage['stat.nuisance_parts'].walkvalues()) >> nuisanceall
storage['parameter.normalized.eres.b_stat'].value = 1
storage['parameter.normalized.eres.a_nonuniform'].value = 2
print(storage.to_table())
print('Constants')
print(storage['parameter.constant'].to_table())
print('Constrained')
print(storage['parameter.constrained'].to_table())
print('Normalized')
print(storage['parameter.normalized'].to_table())
print('Stat')
print(storage['stat'].to_table())
# print('Parameters (latex)')
# print(storage['parameter'].to_latex())
#
# print('Constants (latex)')
# tex = storage['parameter.constant'].to_latex(columns=['path', 'value', 'label'])
# print(tex)