Skip to content
Snippets Groups Projects
g4simulation.py 29.4 KiB
Newer Older
Xin Shi's avatar
Xin Shi committed
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
'''
Description: 
    geat4_pybind simulation   
@Date       : 2021/09/02 12:46:27
@Author     : tanyuhang
@version    : 1.0
   
@Date       : 2023/04/18
@Author     : xingchenli
@version    : 2.0
'''

import geant4_pybind as g4b
import sys
import numpy as np
import random

import json

Chenxi Fu's avatar
Chenxi Fu committed
verbose = 0

Xin Shi's avatar
Xin Shi committed
# Geant4 main process
class Particles:
    #model name for other class to use
    _model = None
    #other pars may use in other class define here
    #use in pixel_detector
    _randx = None
    _randy = None
    def __init__(self, my_d, absorber, g4_seed):
        """
        Description:
            Geant4 main process
            Simulate s_num particles through device
            Record the energy depositon in the device
        Parameters:
        ---------
        energy_steps : list
            Energy deposition of each step in simulation
        edep_devices : list
            Total energy deposition in device          
        @Modify:
        ---------
            2023/04/18
        """	
        geant4_json = "./setting/absorber/" + absorber + ".json"
        with open(geant4_json) as f:
            g4_dic = json.load(f)

        self.geant4_model = g4_dic['geant4_model']
        detector_material=my_d.device_dict['material']
        if(self.geant4_model=='pixel_detector'):
            my_g4d = PixelDetectorConstruction(g4_dic,g4_dic['maxstep'])
            Particles._model = self.geant4_model
            Particles._randx = g4_dic['par_randx']
            Particles._randy = g4_dic['par_randy']
            #there's some parameter only use by this model
            global s_devicenames,s_localposition
            s_devicenames,s_localposition=[],[]
            print("end g4")
        else:
            my_g4d = MyDetectorConstruction(my_d,g4_dic,detector_material,g4_dic['maxstep'])		
        if g4_dic['g4_vis']: 
            ui = None
            ui = g4b.G4UIExecutive(len(sys.argv), sys.argv)
        g4RunManager = g4b.G4RunManagerFactory.CreateRunManager(g4b.G4RunManagerType.Default)
        rand_engine= g4b.RanecuEngine()
        g4b.HepRandom.setTheEngine(rand_engine)
        g4b.HepRandom.setTheSeed(g4_seed)
        g4RunManager.SetUserInitialization(my_g4d)
        # set physics list
        physics_list =  g4b.FTFP_BERT()
        physics_list.RegisterPhysics(g4b.G4StepLimiterPhysics())
        g4RunManager.SetUserInitialization(physics_list)
        # define global parameter
        global s_eventIDs,s_edep_devices,s_p_steps,s_energy_steps,s_events_angle
        s_eventIDs,s_edep_devices,s_p_steps,s_energy_steps,s_events_angle=[],[],[],[],[]

        #define action
        g4RunManager.SetUserInitialization(MyActionInitialization(
                                          g4_dic['par_in'],
                                          g4_dic['par_out'],
                                          g4_dic['par_type'],
                                          g4_dic['par_energy'],
                                          self.geant4_model))
        if g4_dic['g4_vis']:    
            visManager = g4b.G4VisExecutive()
            visManager.Initialize()
            UImanager = g4b.G4UImanager.GetUIpointer()
Chenxi Fu's avatar
Chenxi Fu committed
            UImanager.ApplyCommand('/control/execute paras/g4macro/init_vis.mac')
Xin Shi's avatar
Xin Shi committed
        else:
            UImanager = g4b.G4UImanager.GetUIpointer()
Chenxi Fu's avatar
Chenxi Fu committed
            # reduce verbose from physics list
            UImanager.ApplyCommand('/process/em/verbose %d'%(verbose))
            UImanager.ApplyCommand('/process/had/verbose %d'%(verbose))
Xin Shi's avatar
Xin Shi committed
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
            UImanager.ApplyCommand('/run/initialize')
            
        g4RunManager.BeamOn(int(g4_dic['total_events']))
        if g4_dic['g4_vis']:  
            ui.SessionStart()
        self.p_steps=s_p_steps
        self.init_tz_device = 0    
        self.p_steps_current=[[[single_step[0]+my_d.l_x/2,
                                single_step[1]+my_d.l_y/2,
                                single_step[2]-self.init_tz_device]\
            for single_step in p_step] for p_step in self.p_steps]
        self.energy_steps=s_energy_steps
        self.edep_devices=s_edep_devices
        self.events_angle=s_events_angle

        if(self.geant4_model=='pixel_detector'):
            #record localpos in logicvolume
            self.devicenames = s_devicenames
            self.localposition = s_localposition
            for i in range (0,len(s_devicenames)):
                #print("eventID:",i)
                #print("totalhits:",len(s_localposition[i]))
                pass
            del s_devicenames,s_localposition
                
        if(self.geant4_model=="beam_monitor"):
            hittotal=0
            for particleenergy in s_edep_devices:
                if(particleenergy>0):
                    hittotal=hittotal+1
            self.hittotal=hittotal      #count the numver of hit particles

            number=0
            total_steps=0
            for step in s_p_steps:
                total_steps=len(step)+total_steps
            average_steps=total_steps/len(s_p_steps)
            for step in s_p_steps:
                if(len(step)>=average_steps*0.9):
                    break
                number=number+1
            newtype_step=s_p_steps[number]      #new particle's step
            self.p_steps_current=[[[single_step[0]+my_d.l_x/2,
                                    single_step[1]+my_d.l_y/2,
                                    single_step[2]-self.init_tz_device]\
                for single_step in newtype_step]]
        
            newtype_energy=[0 for i in range(len(newtype_step))]
            for energy in s_energy_steps:
                for i in range(len(newtype_step)):
                    if(len(energy)>i):
                        newtype_energy[i]+=energy[i]
            self.energy_steps=[newtype_energy]      #new particle's every step energy

        del s_eventIDs,s_edep_devices,s_p_steps,s_energy_steps,s_events_angle
        
    def __del__(self):
        pass
#Geant4 for pixel_detector
class PixelDetectorConstruction(g4b.G4VUserDetectorConstruction):                
    "Pixel Detector Construction"
    def __init__(self,g4_dic,maxStep=0.5):
        g4b.G4VUserDetectorConstruction.__init__(self)
        self.g4_dic = g4_dic
        self.solid = {}
        self.logical = {}
        self.physical = {}
        self.checkOverlaps = True
        self.maxStep = maxStep*g4b.um
        self.fStepLimit = g4b.G4UserLimits(self.maxStep)
        self.create_world(g4_dic['world'])
        
        if(g4_dic['object']):
            for object_type in g4_dic['object']:#build all pixel first before build layer
                if(object_type=="pixel"):
                    for every_object in g4_dic['object'][object_type]:
                        self.create_pixel(g4_dic['object'][object_type][every_object])
            print("end pixel constrution")
            for object_type in g4_dic['object']:
                if(object_type=="layer"):
                    for every_object in g4_dic['object'][object_type]:
                        self.create_layer(g4_dic['object'][object_type][every_object])

        
        

    def create_world(self,world_type):

        self.nist = g4b.G4NistManager.Instance()
        material = self.nist.FindOrBuildMaterial(world_type)  
        self.solid['world'] = g4b.G4Box("world",
                                        25000*g4b.um,
                                        25000*g4b.um,
                                        50*g4b.cm)
        self.logical['world'] = g4b.G4LogicalVolume(self.solid['world'], 
                                                    material, 
                                                    "world")
        self.physical['world'] = g4b.G4PVPlacement(None, 
                                                   g4b.G4ThreeVector(0,0,0), 
                                                   self.logical['world'], 
                                                   "world", None, False, 
                                                   0,self.checkOverlaps)
        visual = g4b.G4VisAttributes()
        #visual.SetVisibility(False)
        self.logical['world'].SetVisAttributes(visual)
    
    def create_pixel(self,object):#build pixel 
        #pixel logicvolumn
        name = object['name']
        material_type = self.nist.FindOrBuildMaterial(object['material'],
                                                      False)
        print(type(material_type))
        visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
        sidex = object['side_x']*g4b.um
        sidey = object['side_y']*g4b.um
        sidez = object['side_z']*g4b.um
        self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
        
        self.logical[name] = g4b.G4LogicalVolume(self.solid[name], 
                                                 material_type, 
                                                 name)
        #different part define
        for every_object in object:
                if(every_object.startswith("part")):
                    part = object[every_object]
                    p_name = part['name']
                    p_element_1 = self.nist.FindOrBuildElement(part['element_1'],False)
                    p_element_2 = self.nist.FindOrBuildElement(part['element_2'],False)
                    p_natoms_1 = part['natoms_1']
                    p_natoms_2 = part['natoms_2']
                    p_density = part['density']*g4b.g/g4b.cm3
                    p_mixture=g4b.G4Material(part['mixture_name'],p_density,2) 
                    p_mixture.AddElement(p_element_1,p_natoms_1*g4b.perCent)
                    p_mixture.AddElement(p_element_2,p_natoms_2*g4b.perCent)
                    p_translation = g4b.G4ThreeVector(part['position_x']*g4b.um, part['position_y']*g4b.um, part['position_z']*g4b.um)
                    p_visual = g4b.G4VisAttributes(g4b.G4Color(part['colour'][0],part['colour'][1],part['colour'][2]))
                    
                    p_sidex = part['side_x']*g4b.um
                    p_sidey = part['side_y']*g4b.um
                    p_sidez = part['side_z']*g4b.um
                    p_mother = self.logical[name]
                    self.solid[p_name] = g4b.G4Box(p_name, p_sidex/2., p_sidey/2., p_sidez/2.)
                    self.logical[p_name] = g4b.G4LogicalVolume(self.solid[p_name], 
                                                 p_mixture, 
                                                 p_name)
                    
                    g4b.G4PVPlacement(None, p_translation, 
                                self.logical[p_name],p_name,
                                p_mother, False,
                                0,self.checkOverlaps)
                    p_visual.SetVisibility(False)
                    self.logical[p_name].SetVisAttributes(p_visual)    
                    
                     
        visual.SetVisibility(True)           
        self.logical[name].SetVisAttributes(visual)     
        self.logical[name].SetUserLimits(self.fStepLimit)  
        
    def create_layer(self,object):#build layer
        name = object['name']#temp use,muti layer need change Stepaction
        material_type = self.nist.FindOrBuildMaterial("G4_Galactic",
                                                      False)
        pixel_type = object['pixel_type']
        row = object['row']
        column = object['column']
        mother = self.physical['world']
        translation = g4b.G4ThreeVector(object['position_x']*g4b.um, object['position_y']*g4b.um, object['position_z']*g4b.um)
        rotation = g4b.G4RotationMatrix()
        rotation.rotateX(object['rotation_xyz'][0]*g4b.degree)
        rotation.rotateY(object['rotation_xyz'][1]*g4b.degree)
        rotation.rotateZ(object['rotation_xyz'][2]*g4b.degree)
        visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
        motherBox = g4b.G4Box("MotherBox", 1.0 * g4b.cm, 1.0 * g4b.cm, 250 * g4b.um)

        self.logical[name] = g4b.G4LogicalVolume(motherBox, 
                                                 material_type, 
                                                 name)
        for i in range(0,int(row)):
            for j in range(0,int(column)):
                pixel = self.g4_dic['object']['pixel'][pixel_type]
                t_translation = g4b.G4ThreeVector((pixel['side_x']*(j+1/2-column/2))*g4b.um, (pixel['side_y']*(i+1/2-row/2))*g4b.um,0.0*g4b.um)
                t_pixelname = pixel_type+'_'+str(i)+'_'+str(j)+'_'+name
                g4b.G4PVPlacement(None, t_translation, 
                                self.logical[pixel_type],t_pixelname,
                                self.logical[name], False,
                                i*int(column)+j,self.checkOverlaps)
                
        self.physical[name] = g4b.G4PVPlacement(rotation,translation,                                                
                                                name,self.logical[name],
                                                mother, False, 
                                                0,True)
        visual.SetVisibility(False)
        self.logical[name].SetVisAttributes(visual)   
        self.logical[name].SetUserLimits(self.fStepLimit)  
        
    def Construct(self): # return the world volume
        self.fStepLimit.SetMaxAllowedStep(self.maxStep)
        return self.physical['world']
        
#Geant4 for object
class MyDetectorConstruction(g4b.G4VUserDetectorConstruction):                
    "My Detector Construction"
    def __init__(self,my_d,g4_dic,detector_material,maxStep=0.5):
        g4b.G4VUserDetectorConstruction.__init__(self)
        self.solid = {}
        self.logical = {}
        self.physical = {}
        self.checkOverlaps = True
        self.create_world(g4_dic['world'])
        
        if(detector_material=='Si'):
            detector={
                        "name" : "Device",
                        "material" : "G4_Si",
                        "side_x" : my_d.l_x,
                        "side_y" : my_d.l_y,
                        "side_z" : my_d.l_z,
                        "colour" : [1,0,0],
                        "position_x" : 0,
                        "position_y" : 0,
                        "position_z" : my_d.l_z/2.0
                        }
            self.create_elemental(detector)

        if(detector_material=='SiC'):
            detector={
                        "name" : "Device",
                        "material_1" : "Si",
                        "material_2" : "C",
                        "compound_name" :"SiC",
                        "density" : 3.2,
                        "natoms_1" : 50,
                        "natoms_2" : 50,
                        "side_x" : my_d.l_x,
                        "side_y" : my_d.l_y,
                        "side_z" : my_d.l_z,
                        "colour" : [1,0,0],
                        "position_x" : 0,
                        "position_y" : 0,
                        "position_z" : my_d.l_z/2.0,
                        "tub" : {}
                        }
            self.create_binary_compounds(detector)
            
        if(g4_dic['object']):
            for object_type in g4_dic['object']:
                if(object_type=="elemental"):
                    for every_object in g4_dic['object'][object_type]:
                        self.create_elemental(g4_dic['object'][object_type][every_object])
                if(object_type=="binary_compounds"):
                    for every_object in g4_dic['object'][object_type]:
                        self.create_binary_compounds(g4_dic['object'][object_type][every_object])
       
        self.maxStep = maxStep*g4b.um
        self.fStepLimit = g4b.G4UserLimits(self.maxStep)
        self.logical["Device"].SetUserLimits(self.fStepLimit)

    def create_world(self,world_type):

        self.nist = g4b.G4NistManager.Instance()
        material = self.nist.FindOrBuildMaterial(world_type)  
        self.solid['world'] = g4b.G4Box("world",
                                        25000*g4b.um,
                                        25000*g4b.um,
                                        25000*g4b.um)
        self.logical['world'] = g4b.G4LogicalVolume(self.solid['world'], 
                                                    material, 
                                                    "world")
        self.physical['world'] = g4b.G4PVPlacement(None, 
                                                   g4b.G4ThreeVector(0,0,0), 
                                                   self.logical['world'], 
                                                   "world", None, False, 
                                                   0,self.checkOverlaps)
        visual = g4b.G4VisAttributes()
        visual.SetVisibility(False)
        self.logical['world'].SetVisAttributes(visual)

    def create_elemental(self,object):
        name = object['name']
        material_type = self.nist.FindOrBuildMaterial(object['material'],
                                                      False)
        translation = g4b.G4ThreeVector(object['position_x']*g4b.um, object['position_y']*g4b.um, object['position_z']*g4b.um)
        visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
        mother = self.physical['world']
        sidex = object['side_x']*g4b.um
        sidey = object['side_y']*g4b.um
        sidez = object['side_z']*g4b.um
        self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
        
        self.logical[name] = g4b.G4LogicalVolume(self.solid[name], 
                                                 material_type, 
                                                 name)
        self.physical[name] = g4b.G4PVPlacement(None,translation,                                                
                                                name,self.logical[name],
                                                mother, False, 
                                                0,self.checkOverlaps)
        self.logical[name].SetVisAttributes(visual)     

    def create_binary_compounds(self,object):
        name = object['name']
        material_1 = self.nist.FindOrBuildElement(object['material_1'],False)
        material_2 = self.nist.FindOrBuildElement(object['material_2'],False)
        material_density = object['density']*g4b.g/g4b.cm3
        compound=g4b.G4Material(object['compound_name'],material_density,2) 
        compound.AddElement(material_1,object['natoms_1']*g4b.perCent)
        compound.AddElement(material_2,object['natoms_2']*g4b.perCent)
        translation = g4b.G4ThreeVector(object['position_x']*g4b.um, object['position_y']*g4b.um, object['position_z']*g4b.um)
        visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
        mother = self.physical['world']
        sidex = object['side_x']*g4b.um
        sidey = object['side_y']*g4b.um
        sidez = object['side_z']*g4b.um
        if not(object['tub']):
            self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
        else:
            self.solid[name+"box"] = g4b.G4Box(name+"box", 
                                           sidex/2., sidey/2., sidez/2.)
            self.solid[name+"tub"] = g4b.G4Tubs(name+"tub", 0,object['tub']['tub_radius']*g4b.um,
                                                object['tub']['tub_depth']*g4b.um, 0,360*g4b.deg)
            self.solid[name] = g4b.G4SubtractionSolid(name,
                                                    self.solid[name+"box"],
                                                    self.solid[name+"tub"])
            
        self.logical[name] = g4b.G4LogicalVolume(self.solid[name], 
                                                 compound, 
                                                 name)
        self.physical[name] = g4b.G4PVPlacement(None,translation,                                                
                                                name,self.logical[name],
                                                mother, False, 
                                                0,self.checkOverlaps)
        self.logical[name].SetVisAttributes(visual)


    

    def Construct(self): # return the world volume
        self.fStepLimit.SetMaxAllowedStep(self.maxStep)
        return self.physical['world']


class MyPrimaryGeneratorAction(g4b.G4VUserPrimaryGeneratorAction):
    "My Primary Generator Action"
    def __init__(self,par_in,par_out,par_type,par_energy,geant4_model):
        g4b.G4VUserPrimaryGeneratorAction.__init__(self)
        self.geant4_model=geant4_model
        par_direction = [ par_out[i] - par_in[i] for i in range(3) ]  
        particle_table = g4b.G4ParticleTable.GetParticleTable()
        particle = particle_table.FindParticle(par_type) # define particle
        beam = g4b.G4ParticleGun(1)
        beam.SetParticleEnergy(par_energy*g4b.MeV)
        beam.SetParticleMomentumDirection(g4b.G4ThreeVector(par_direction[0],
                                                            par_direction[1],
                                                            par_direction[2]))
        beam.SetParticleDefinition(particle)
        beam.SetParticlePosition(g4b.G4ThreeVector(par_in[0]*g4b.um,
                                                   par_in[1]*g4b.um,
                                                   par_in[2]*g4b.um))  
        self.particleGun = beam
        self.position = par_in
        if(self.geant4_model=="time_resolution"):
            beam2 = g4b.G4ParticleGun(1)
            beam2.SetParticleEnergy(0.546*g4b.MeV)
            beam2.SetParticleMomentumDirection(g4b.G4ThreeVector(par_direction[0],
                                                                par_direction[1],
                                                                par_direction[2]))
            beam2.SetParticleDefinition(particle)
            beam2.SetParticlePosition(g4b.G4ThreeVector(par_in[0]*g4b.um,
                                                        par_in[1]*g4b.um,
                                                        par_in[2]*g4b.um))  
            self.particleGun2 = beam2
        if(self.geant4_model=="pixel_detector"):
            self.directionx = par_direction[0]
            self.directiony = par_direction[1]
            self.directionz = par_direction[2]

    def GeneratePrimaries(self, event):
        if(self.geant4_model=="time_resolution"):
            self.particleGun.GeneratePrimaryVertex(event)
            self.particleGun2.GeneratePrimaryVertex(event)
            pass
        elif(self.geant4_model=="pixel_detector"):
            randx = Particles._randx
            randy = Particles._randy
            rdo_x = random.uniform(-randx,randx)
            rdo_y = random.uniform(-randy,randy)
            rdi_x = random.uniform(-randx,randx)
            rdi_y = random.uniform(-randy,randy)
            direction = g4b.G4ThreeVector(rdo_x,rdo_y,self.directionz)
            self.particleGun.SetParticleMomentumDirection(direction)
            self.particleGun.SetParticlePosition(g4b.G4ThreeVector(self.position[0]*g4b.um,
                                                   self.position[1]*g4b.um,
                                                   self.position[2]*g4b.um))  
            self.particleGun.GeneratePrimaryVertex(event)
            #print("direction:",rdo_x-rdi_x,rdo_y-rdi_y,self.directionz)
            #print(rdi_x,rdi_y,self.position[2])
        else:
            self.particleGun.GeneratePrimaryVertex(event)
            
        


class MyRunAction(g4b.G4UserRunAction):
    def __init__(self):
        g4b.G4UserRunAction.__init__(self)
        milligray = 1.e-3*g4b.gray
        microgray = 1.e-6*g4b.gray
        nanogray = 1.e-9*g4b.gray
        picogray = 1.e-12*g4b.gray

        g4b.G4UnitDefinition("milligray", "milliGy", "Dose", milligray)
        g4b.G4UnitDefinition("microgray", "microGy", "Dose", microgray)
        g4b.G4UnitDefinition("nanogray", "nanoGy", "Dose", nanogray)
        g4b.G4UnitDefinition("picogray", "picoGy", "Dose", picogray)
      
    def BeginOfRunAction(self, run):
        g4b.G4RunManager.GetRunManager().SetRandomNumberStore(False)
   
    def EndOfRunAction(self, run):
        nofEvents = run.GetNumberOfEvent()
        if nofEvents == 0:
            print("nofEvents=0")
            return

class MyEventAction(g4b.G4UserEventAction):
    "My Event Action"
    def __init__(self, runAction, point_in, point_out):
        g4b.G4UserEventAction.__init__(self)
        self.fRunAction = runAction
        self.point_in = point_in
        self.point_out = point_out

    def BeginOfEventAction(self, event):
        self.edep_device=0.
        self.event_angle = 0.
        self.p_step = []
        self.energy_step = []
        #use in pixel_detector
        self.volume_name = []
        self.localposition = []

    def EndOfEventAction(self, event):
        eventID = event.GetEventID()
        #print("eventID:%s"%eventID)
        if len(self.p_step):
            point_a = [ b-a for a,b in zip(self.point_in,self.point_out)]
            point_b = [ c-a for a,c in zip(self.point_in,self.p_step[-1])]
            self.event_angle = cal_angle(point_a,point_b)
        else:
            self.event_angle = None
        save_geant4_events(eventID,self.edep_device,
                           self.p_step,self.energy_step,self.event_angle)
        if(Particles._model == "pixel_detector"):
            save_pixel_detector_events(self.volume_name,self.localposition)

    def RecordDevice(self, edep,point_in,point_out):
        self.edep_device += edep
        self.p_step.append([point_in.getX()*1000,
                           point_in.getY()*1000,point_in.getZ()*1000])
        self.energy_step.append(edep)
    
    def RecordPixel(self,step):
        edep = step.GetTotalEnergyDeposit()
        point_pre  = step.GetPreStepPoint()
        point_post = step.GetPostStepPoint() 
        point_in   = point_pre.GetPosition()
        point_out  = point_post.GetPosition()
        if(edep<=0.0):
            return
        touchable = point_pre.GetTouchable()
        volume = touchable.GetVolume()
            
        transform = touchable.GetHistory().GetTopTransform()
        localpos = transform.TransformPoint(point_in)
        
        self.edep_device += edep
        self.p_step.append([point_in.getX()*1000,
                           point_in.getY()*1000,point_in.getZ()*1000])
        self.energy_step.append(edep)   
        #save only in RecordPixel
        self.volume_name.append(volume.GetName())
        self.localposition.append([localpos.getX()/g4b.um,localpos.getY()/g4b.um,localpos.getZ()/g4b.um])
        
        #print("edep:", edep)
        #print("Volume Name:", volume.GetName())
        #print("Global Position in Worlds Volume:",point_in/g4b.um)
        #print("Local Position in Pixel:", localpos/g4b.um)

def save_geant4_events(eventID,edep_device,p_step,energy_step,event_angle):
    if(len(p_step)>0):
        s_eventIDs.append(eventID)
        s_edep_devices.append(edep_device)
        s_p_steps.append(p_step)
        s_energy_steps.append(energy_step)
        s_events_angle.append(event_angle)
    else:
        s_eventIDs.append(eventID)
        s_edep_devices.append(edep_device)
        s_p_steps.append([[0,0,0]])
        s_energy_steps.append([0])
        s_events_angle.append(event_angle)
        
def save_pixel_detector_events(volume_name,localposition):
        global s_devicenames,s_localposition
        s_devicenames.append(volume_name)
        s_localposition.append(localposition)
        #print("volume_name len:",len(volume_name))
        #print("localposition len: ",len(localposition))
        
def cal_angle(point_a,point_b):
    "Calculate the angle between point a and b"
    x=np.array(point_a)
    y=np.array(point_b)
    l_x=np.sqrt(x.dot(x))
    l_y=np.sqrt(y.dot(y))
    dot_product=x.dot(y)
    if l_x*l_y > 0:
        cos_angle_d=dot_product/(l_x*l_y)
        angle_d=np.arccos(cos_angle_d)*180/np.pi
    else:
        angle_d=9999
    return angle_d


class MySteppingAction(g4b.G4UserSteppingAction):
    "My Stepping Action"
    def __init__(self, eventAction):
        g4b.G4UserSteppingAction.__init__(self)
        self.fEventAction = eventAction

    def UserSteppingAction(self, step):
        edep = step.GetTotalEnergyDeposit()
        point_pre  = step.GetPreStepPoint()
        point_post = step.GetPostStepPoint() 
        point_in   = point_pre.GetPosition()
        point_out  = point_post.GetPosition()
        volume = step.GetPreStepPoint().GetTouchable().GetVolume().GetLogicalVolume()
        volume_name = volume.GetName()
        if(volume_name == "Device"):
            self.fEventAction.RecordDevice(edep,point_in,point_out)
        if(volume_name.startswith("Taichu")):
            self.fEventAction.RecordPixel(step)
            return

class MyActionInitialization(g4b.G4VUserActionInitialization):
    def __init__(self,par_in,par_out,par_type,par_energy,geant4_model):
        g4b.G4VUserActionInitialization.__init__(self)
        self.par_in = par_in
        self.par_out = par_out
        self.par_type=par_type
        self.par_energy=par_energy
        self.geant4_model=geant4_model

    def Build(self):
        self.SetUserAction(MyPrimaryGeneratorAction(self.par_in,
                                                    self.par_out,
                                                    self.par_type,
                                                    self.par_energy,
                                                    self.geant4_model))
        # global myRA_action
        myRA_action = MyRunAction()
        self.SetUserAction(myRA_action)
        myEA = MyEventAction(myRA_action,self.par_in,self.par_out)
        self.SetUserAction(myEA)
        self.SetUserAction(MySteppingAction(myEA))