Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
'''
Description:
Simulate induced current through BB or CSA amplifier
@Date : 2021/09/02 14:11:57
@Author : tanyuhang
@version : 1.0
'''
import math
import json
import ROOT
from current.cal_current import CalCurrent
# TODO: rewriting in progress
# CSA and BB amplifier simulation
class Amplifier:
"""Get current after amplifier with convolution, for each reading electrode
Parameters
---------
my_current : CalCurrent
The object of CalCurrent, with induced current and time information
amplifier_name : str
The name of amplifier, CSA or BB
mintstep : float
The readout time step (bin width)
Attributes
---------
ele : list
The list of induced current after amplifier
Methods
---------
amplifier_define
Define parameters and the responce function of amplifier
sampling_charge
Sampling the induced current with readout time step
amplifier_simulation
Convolute the induced current with the responce function of amplifier
Last Modified
---------
2024/09/14
"""
def __init__(self, my_current: CalCurrent, amplifier_name: str, mintstep="50e-12"):
self.ele = []
ele_json = "./setting/electronics/" + amplifier_name + ".json"
with open(ele_json) as f:
amplifier_parameters = json.load(f)
self.ele_name = amplifier_parameters['ele_name']
self.read_ele_num = my_current.read_ele_num
# each reading electrode has an induced current
self.amplifier_define(amplifier_parameters)
self.sampling_charge(my_current, mintstep)
self.amplifier_simulation()
def amplifier_define(self, amplifier_parameters: dict):
"""
Description:
The parameters of CSA and BB amplifier.
Details introduction can be got in setting module.
@Modify:
---------
2021/09/09
"""
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
if amplifier_parameters['ele_name'] == 'CSA':
""" CSA parameter initialization"""
self.t_rise = amplifier_parameters['t_rise']
self.t_fall = amplifier_parameters['t_fall']
self.trans_imp = amplifier_parameters['trans_imp']
t_rise = self.t_rise
t_fall = self.t_fall
self.tau_rise = t_rise/2.2*1e-9
self.tau_fall = t_fall/2.2*1e-9
if (self.tau_rise == self.tau_fall):
self.tau_rise *= 0.9
self.sh_max = 0.0
self.fill_amplifier_output = self.fill_amplifier_output_CSA
self.set_scope_output = self.set_scope_output_CSA
elif amplifier_parameters['ele_name'] == 'BB':
""" BB parameter initialization"""
self.BBW = amplifier_parameters['BBW']
self.BBGain = amplifier_parameters['BBGain']
self.BB_imp = amplifier_parameters['BB_imp']
self.OscBW = amplifier_parameters['OscBW']
tau_C50 = 1.0e-12*50.*self.CDet #Oscil. RC
tau_BW = 0.35/(1.0e9*self.OscBW)/2.2 #Oscil. RC
tau_BB_RC = 1.0e-12*self.BB_imp*self.CDet #BB RC
tau_BB_BW = 0.35/(1.0e9*self.BBW)/2.2 #BB Tau
self.tau_scope = math.sqrt(pow(tau_C50,2)+pow(tau_BW,2))
self.tau_BBA = math.sqrt(pow(tau_BB_RC,2)+pow(tau_BB_BW,2))
self.fill_amplifier_output = self.fill_amplifier_output_BB
self.set_scope_output = self.set_scope_output_BB
def sampling_charge(self, my_current: CalCurrent, mintstep: float):
""" Transform current to charge
with changing bin width to oscilloscope bin width
"""
self.max_num=[]
self.itot=[]
for i in range(self.read_ele_num):
self.max_num.append(my_current.sum_cu[i].GetNbinsX())
self.itot.append([0.0]*self.max_num[i])
self.max_hist_num = my_current.n_bin
self.undersampling = int(float(mintstep)/my_current.t_bin)
self.time_unit = my_current.t_bin*self.undersampling
self.CDet_j = 0 # CSA readout mode
self.qtot = [0.0]*self.read_ele_num
# self.qtot = [0.0]
# get total charge
for k in range(self.read_ele_num):
i=0
for j in range(0,self.max_hist_num,self.undersampling):
self.itot[k][i] = my_current.sum_cu[k].GetBinContent(j)
self.qtot[k] = self.qtot[k] + self.itot[k][i]*self.time_unit
i+=1
def amplifier_simulation(self):
"""
Description:
CSA and BB amplifier Simulation
Parameters:
---------
arg1 : int
@Modify:
---------
2021/09/09
"""
max_hist_num = int(self.max_hist_num/self.undersampling)
# Variable Initialization
if self.ele_name == 'CSA':
IintTime = 2.0*(self.t_rise+self.t_fall)*1e-9/self.time_unit
IMaxSh = int(max_hist_num + IintTime)
self.shaper_out_Q = [0.0]*IMaxSh
elif self.ele_name == 'BB':
IintTime = 3.0*self.tau_BBA/self.time_unit
IMaxSh = int(max_hist_num + IintTime)
self.Iout_BB_RC = [0.0]*IMaxSh
self.Iout_C50 = [0.0]*IMaxSh
self.BBGraph = [0.0]*IMaxSh
self.Vout_scope = [0.0]*IMaxSh
preamp_Q = []
for i in range(self.read_ele_num):
preamp_Q.append([0.0]*IMaxSh)
# step for convolution delay
step = 1
for k in range(self.read_ele_num):
for i in range(IMaxSh-step):
if(i>0 and i <self.max_hist_num-step):
preamp_Q[k][i] = 0.0
for il in range(i,i+step):
preamp_Q[k][i] += self.itot[k][il]*self.time_unit
elif (i != 0):
preamp_Q[k][i]=0.0
for k in range(self.read_ele_num):
for i in range(IMaxSh-step):
if i >= step:
dif_shaper_Q = preamp_Q[k][i]
else:
dif_shaper_Q = 0
for j in range(IMaxSh-i):
self.fill_amplifier_output(i, j, dif_shaper_Q)
self.set_scope_output(i, k)
self.fill_th1f(k, IMaxSh)
def fill_amplifier_output_CSA(self, i, j, dif_shaper_Q: float):
""" Fill CSA out signal, charge"""
self.shaper_out_Q[i+j] += self.tau_fall/(self.tau_fall+self.tau_rise) \
* dif_shaper_Q*(math.exp(-j*self.time_unit
/ self.tau_fall)-math.exp(
- j*self.time_unit/self.tau_rise))
def fill_amplifier_output_BB(self, i, j, dif_shaper_Q: float):
""" Fill BB out signal, current"""
self.Iout_C50[i+j] += (dif_shaper_Q)/self.tau_scope \
* math.exp(-j*self.time_unit/self.tau_scope)
self.Iout_BB_RC[i+j] += (dif_shaper_Q)/self.tau_BBA \
* math.exp(-j*self.time_unit/self.tau_BBA)
def set_scope_output_CSA(self, i, k):
Ci = 3.5e-11 #fF
Qfrac = 1.0/(1.0+self.CDet*1e-12/Ci)
Q_max = max(self.shaper_out_Q) if max(self.shaper_out_Q) > 0 else min(self.shaper_out_Q)
if Q_max == 0.0:
self.Vout_scope[i] = 0.0
elif self.CDet_j == 0:
self.Vout_scope[i] = self.shaper_out_Q[i]*self.trans_imp\
* 1e15*self.qtot[k]*Qfrac/Q_max
# self.Vout_scope[i] = self.shaper_out_Q[i]*self.trans_imp/(self.CDet*1e-12) #C_D=3.7pF
elif self.CDet_j == 1:
self.Vout_scope[i] = self.shaper_out_Q[i]*self.trans_imp\
* 1e15*self.qtot[k]/Q_max
def set_scope_output_BB(self, i, k):
self.BBGraph[i] = 1e3 * self.BBGain * self.Iout_BB_RC[i]
R_in = 50 # the input impedance of the amplifier
self.Vout_scope[i] = R_in * self.Iout_C50[i]
def fill_th1f(self, k, IMaxSh):
""" Change amplifier outputs
to oscilloscope amplitude [mV]
and save in the TH1F
"""
self.ele.append(ROOT.TH1F("electronics %s"%(self.ele_name)+str(k+1), "electronics %s"%(self.ele_name),
IMaxSh, 0, IMaxSh*self.time_unit))
# get the max absolute value of the shaper output
for i in range(IMaxSh):
self.ele[k].SetBinContent(i,self.Vout_scope[i])
#Print the max current time of CSA
V_max = max(self.Vout_scope) if max(self.Vout_scope) > 0 else min(self.Vout_scope)
t_max = self.Vout_scope.index(V_max)
print("peak time={:.2e}".format(t_max*self.time_unit))
def __del__(self):
pass