Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import geant4_pybind as g4b
import sys
import os
import ROOT
import numpy as np
import math
import time
class SiITk:
def __init__(self, my_d, my_f, dset):
g4_dic = dset.pygeant4
my_g4d = MyDetectorConstruction(my_d,my_f,g4_dic['det_model'],g4_dic['maxstep'])
if g4_dic['g4_vis']:
ui = None
ui = g4b.G4UIExecutive(len(sys.argv), sys.argv)
g4RunManager = g4b.G4RunManagerFactory.CreateRunManager(g4b.G4RunManagerType.Default)
rand_engine= g4b.RanecuEngine()
g4b.HepRandom.setTheEngine(rand_engine)
g4b.HepRandom.setTheSeed(dset.g4seed)
g4RunManager.SetUserInitialization(my_g4d)
# set physics list
physics_list = g4b.FTFP_BERT()
physics_list.SetVerboseLevel(1)
physics_list.RegisterPhysics(g4b.G4StepLimiterPhysics())
g4RunManager.SetUserInitialization(physics_list)
# define global parameter
global s_eventIDs,s_edep_devices,s_edep_devices1,s_edep_devices2,s_p_steps,s_energy_steps,s_events_angle
s_eventIDs,s_edep_devices,s_edep_devices1,s_edep_devices2,s_p_steps,s_energy_steps,s_events_angle=[],[],[],[],[],[],[]
global hitsdata_EvID,hitsdata_dirx,hitsdata_diry,hitsdata_dirz,hitsdata_edep1,hitsdata_edep2
hitsdata_EvID,hitsdata_dirx,hitsdata_diry,hitsdata_dirz,hitsdata_edep1,hitsdata_edep2=0,0,0,0,0,0
print('\n\n\n'+str(hitsdata_edep1)+'\n\n\n')
#define action
g4RunManager.SetUserInitialization(MyActionInitialization(
g4_dic['par_in'],
g4_dic['par_out']))
if g4_dic['g4_vis']:
visManager = g4b.G4VisExecutive()
visManager.Initialize()
UImanager = g4b.G4UImanager.GetUIpointer()
UImanager.ApplyCommand('/control/execute param_file/g4macro/init_vis.mac')
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
else:
UImanager = g4b.G4UImanager.GetUIpointer()
UImanager.ApplyCommand('/run/initialize')
g4RunManager.BeamOn(int(dset.total_events))
if g4_dic['g4_vis']:
ui.SessionStart()
self.p_steps=s_p_steps
#print(s_p_steps)
self.init_tz_device = my_g4d.init_tz_device
self.p_steps_current=[[[single_step[0],single_step[1],single_step[2]-self.init_tz_device]\
for single_step in p_step] for p_step in self.p_steps]
self.edep_devices=s_edep_devices
self.edep_devices1=s_edep_devices1
self.edep_devices2=s_edep_devices2
self.events_angle=s_events_angle
hittotal=0
for particleenergy in s_edep_devices:
if(particleenergy>0):
hittotal=hittotal+1
self.hittotal=hittotal #count the number of hit particles
number=0
total_steps=0
for step in s_p_steps:
total_steps=len(step)+total_steps
average_steps=total_steps/len(s_p_steps)
for step in s_p_steps:
if(len(step)>average_steps):
break
number=number+1
newtype_step=s_p_steps[number] #new particle's step
self.p_steps_current=[[[single_step[0],single_step[1],single_step[2]-self.init_tz_device]\
for single_step in newtype_step]]
newtype_energy=[0 for i in range(len(newtype_step))]
for energy in s_energy_steps:
for i in range(len(newtype_step)):
if(len(energy)>i):
newtype_energy[i]+=energy[i]
self.energy_steps=[newtype_energy] #new particle's every step' energy
del s_eventIDs,s_edep_devices,s_edep_devices1,s_edep_devices2,s_p_steps,s_energy_steps,s_events_angle
del hitsdata_EvID,hitsdata_dirx,hitsdata_diry,hitsdata_dirz,hitsdata_edep1,hitsdata_edep2
def __del__(self):
pass
# #my adding 3
# class MyTrackerHit(g4b.G4VHit):
# def __init__(self, trackID, chamberNb, edep, pos):
# super().__init__()
# self.fTrackID = trackID
# self.fChamberNb = chamberNb
# self.fEdep = edep
# self.fPos = pos
# def Draw(self):
# vVisManager = G4VVisManager.GetConcreteInstance()
# if vVisManager != None:
# circle = G4Circle(self.fPos)
# circle.SetScreenSize(4)
# circle.SetFillStyle(G4Circle.filled)
# colour = G4Colour(1, 0, 0)
# attribs = G4VisAttributes(colour)
# circle.SetVisAttributes(attribs)
# vVisManager.Draw(circle)
# def Print(self):
# print("trackID:", self.fTrackID, "chamberNb:", self.fChamberNb, "Edep:", end=" ")
# print(G4BestUnit(self.fEdep, "Energy"), "Position:", G4BestUnit(self.fPos, "Length"))
# #my adding 1
# class MyHitsCollection(g4b.G4VHitsCollection):
# def __init__(self, detName, colNam):
# super().__init__(detName, colNam)
# self.collection = []
# def __getitem__(self, i):
# return self.collection[i]
# def insert(self, item):
# self.collection.append(item)
# def GetHit(self, i):
# return self.collection[i]
# def GetSize(self):
# return len(self.collection)
# #my adding 2
# class MyTrackerSD(g4b.G4VSensitiveDetector):
# def __init__(self, name, hitsCollectionName):
# super().__init__(name)
# self.collectionName.insert(hitsCollectionName)
# def Initialize(self, hce):
# # Create hits collection
# #self.fHitsCollection = None
# self.fHitsCollection = MyHitsCollection(
# self.SensitiveDetectorName, self.collectionName[0])
# # Add this collection in hce
# hcID = g4b.G4SDManager.GetSDMpointer().GetCollectionID(self.collectionName[0])
# hce.AddHitsCollection(hcID, self.fHitsCollection)
# def ProcessHits(self, aStep, rOhist):
# # energy deposit
# edep = aStep.GetTotalEnergyDeposit()
# if edep == 0:
# return False
# newHit = MyTrackerHit(aStep.GetTrack().GetTrackID(),
# aStep.GetPreStepPoint().GetTouchable().GetCopyNumber(),
# edep,
# aStep.GetPostStepPoint().GetPosition())
# self.fHitsCollection.insert(newHit)
# # newHit.Print()
# return True
class MyDetectorConstruction(g4b.G4VUserDetectorConstruction):
"My Detector Construction"
def __init__(self,my_d,my_f,sensor_model,maxStep=0.5):
g4b.G4VUserDetectorConstruction.__init__(self)
self.solid = {}
self.logical = {}
self.physical = {}
self.checkOverlaps = True
self.create_world(my_d)
#3D source order: beta->sic->si
#2D source order: beta->Si->SiC
tx_all = my_d.l_x/2.0*g4b.um
ty_all = my_d.l_y/2.0*g4b.um
if "planar3D" or "lgad3D" in sensor_model:
tz_device = my_d.l_z/2.0*g4b.um
self.init_tz_device = 0
device_x = my_d.l_x*g4b.um
device_y = my_d.l_y*g4b.um
device_z = my_d.l_z*g4b.um
self.create_si_box(
name = "Device",
sidex = device_x,
sidey = device_y,
sidez = device_z,
translation = [tx_all,ty_all,tz_device],
material_si = "G4_Si",
colour = [1,0,0],
mother = 'world')
self.create_si_box(
name = "Device1",
sidex = device_x,
sidey = device_y,
sidez = device_z,
translation = [tx_all,ty_all,tz_device-device_z],
material_si = "G4_Si",
colour = [1,0,0],
mother = 'world')
self.create_Al_box(
name = "Sheet",
sidex = 10000*g4b.um,
sidey = 10000*g4b.um,
sidez = device_z,
translation = [tx_all,ty_all,tz_device-2*device_z],
colour = [2,0,0],
mother = 'world')
self.create_si_box(
name = "Device2",
sidex = device_x,
sidey = device_y,
sidez = device_z,
translation = [tx_all,ty_all,tz_device-3*device_z],
material_si = "G4_Si",
colour = [3,0,0],
mother = 'world')
self.create_Al_box(
name = "Foil",
sidex = 5000*g4b.um,
sidey = 5000*g4b.um,
sidez = 10*g4b.um,
translation = [tx_all,ty_all,tz_device-3*device_z-10*g4b.um],
colour = [2,0,0],
mother = 'world')
self.maxStep = maxStep*g4b.um
self.fStepLimit = g4b.G4UserLimits(self.maxStep)
self.logical["Device"].SetUserLimits(self.fStepLimit)
def create_world(self,my_d):
self.nist = g4b.G4NistManager.Instance()
material = self.nist.FindOrBuildMaterial("G4_AIR")
self.solid['world'] = g4b.G4Box("world",
25000*g4b.um,
25000*g4b.um,
25000*g4b.um)
self.logical['world'] = g4b.G4LogicalVolume(self.solid['world'],
material,
"world")
self.physical['world'] = g4b.G4PVPlacement(None,
g4b.G4ThreeVector(0,0,0),
self.logical['world'],
"world", None, False,
0,self.checkOverlaps)
visual = g4b.G4VisAttributes()
visual.SetVisibility(False)
self.logical['world'].SetVisAttributes(visual)
def create_Al_box(self, **kwargs):
name = kwargs['name']
material_Al = self.nist.FindOrBuildMaterial("G4_Al")
translation = g4b.G4ThreeVector(*kwargs['translation'])
visual = g4b.G4VisAttributes(g4b.G4Color(*kwargs['colour']))
mother = self.physical[kwargs['mother']]
sidex = kwargs['sidex']
sidey = kwargs['sidey']
sidez = kwargs['sidez']
self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
self.logical[name] = g4b.G4LogicalVolume(self.solid[name],
material_Al,
name)
self.physical[name] = g4b.G4PVPlacement(None,translation,
name,self.logical[name],
mother, False,
0,self.checkOverlaps)
self.logical[name].SetVisAttributes(visual)
def create_si_box(self, **kwargs):
name = kwargs['name']
material_si = self.nist.FindOrBuildMaterial(kwargs['material_si'],False)
translation = g4b.G4ThreeVector(*kwargs['translation'])
visual = g4b.G4VisAttributes(g4b.G4Color(*kwargs['colour']))
mother = self.physical[kwargs['mother']]
sidex = kwargs['sidex']
sidey = kwargs['sidey']
sidez = kwargs['sidez']
self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
self.logical[name] = g4b.G4LogicalVolume(self.solid[name],
material_si,
name)
self.physical[name] = g4b.G4PVPlacement(None,translation,
name,self.logical[name],
mother, False,
0,self.checkOverlaps)
self.logical[name].SetVisAttributes(visual)
def Construct(self): # return the world volume
self.fStepLimit.SetMaxAllowedStep(self.maxStep)
return self.physical['world']
# #my adding 4
# def ConstructSDandField(self):
# # Sensitive detectors
# trackerChamberSDname = "B2/TrackerChamberSD"
# self.aTrackerSD = MyTrackerSD(trackerChamberSDname, "TrackerHitsCollection")
# g4b.G4SDManager.GetSDMpointer().AddNewDetector(self.aTrackerSD)
# # Setting aTrackerSD to all logical volumes with the same name
# # of "Chamber_LV".
# self.SetSensitiveDetector("Chamber_LV", self.aTrackerSD, True)
# # Create global magnetic field messenger.
# # Uniform magnetic field is then created automatically if
# # the field value is not zero.
# fieldValue = G4ThreeVector()
# self.fMagFieldMessenger = G4GlobalMagFieldMessenger(fieldValue)
# self.fMagFieldMessenger.SetVerboseLevel(1)
class MyPrimaryGeneratorAction(g4b.G4VUserPrimaryGeneratorAction):
"My Primary Generator Action"
def __init__(self,par_in,par_out):
g4b.G4VUserPrimaryGeneratorAction.__init__(self)
par_direction = [ par_out[i] - par_in[i] for i in range(3) ]
particle_table = g4b.G4ParticleTable.GetParticleTable()
electron = particle_table.FindParticle("proton") # define the proton
beam = g4b.G4ParticleGun(1)
beam.SetParticleEnergy(80*g4b.MeV)
# beam.SetParticleEnergy(1600*g4b.MeV)
beam.SetParticleMomentumDirection(g4b.G4ThreeVector(par_direction[0],
par_direction[1],
par_direction[2]))
beam.SetParticleDefinition(electron)
beam.SetParticlePosition(g4b.G4ThreeVector(par_in[0]*g4b.um,
par_in[1]*g4b.um,
par_in[2]*g4b.um))
self.particleGun = beam
def GeneratePrimaries(self, event):
self.particleGun.GeneratePrimaryVertex(event)
class MyRunAction(g4b.G4UserRunAction):
def __init__(self):
g4b.G4UserRunAction.__init__(self)
milligray = 1.e-3*g4b.gray
microgray = 1.e-6*g4b.gray
nanogray = 1.e-9*g4b.gray
picogray = 1.e-12*g4b.gray
g4b.G4UnitDefinition("milligray", "milliGy", "Dose", milligray)
g4b.G4UnitDefinition("microgray", "microGy", "Dose", microgray)
g4b.G4UnitDefinition("nanogray", "nanoGy", "Dose", nanogray)
g4b.G4UnitDefinition("picogray", "picoGy", "Dose", picogray)
def BeginOfRunAction(self, run):
g4b.G4RunManager.GetRunManager().SetRandomNumberStore(False)
def EndOfRunAction(self, run):
nofEvents = run.GetNumberOfEvent()
if nofEvents == 0:
print("nofEvents=0")
return
class MyEventAction(g4b.G4UserEventAction):
"My Event Action"
def __init__(self, runAction, point_in, point_out):
g4b.G4UserEventAction.__init__(self)
self.fRunAction = runAction
self.point_in = point_in
self.point_out = point_out
def BeginOfEventAction(self, event):
self.edep_device=0.
self.edep_device1=0.
self.edep_device2=0.
self.event_angle = 0.
self.p_step = []
self.energy_step = []
def EndOfEventAction(self, event):
eventID = event.GetEventID()
#print("eventID:%s"%eventID)
if len(self.p_step):
point_a = [ b-a for a,b in zip(self.point_in,self.point_out)]
point_b = [ c-a for a,c in zip(self.point_in,self.p_step[-1])]
self.event_angle = cal_angle(point_a,point_b)
else:
self.event_angle = None
save_geant4_events(eventID,self.edep_device,self.edep_device1,self.edep_device2,
self.p_step,self.energy_step,self.event_angle)
def RecordDevice(self, edep,point_in,point_out):
self.edep_device += edep
self.p_step.append([point_in.getX()*1000,
point_in.getY()*1000,point_in.getZ()*1000])
self.energy_step.append(edep)
def RecordDevice1(self, edep,point_in,point_out):
self.edep_device1 += edep
self.p_step.append([point_in.getX()*1000,
point_in.getY()*1000,point_in.getZ()*1000])
self.energy_step.append(edep)
def RecordDevice2(self, edep,point_in,point_out):
self.edep_device2 += edep
self.p_step.append([point_in.getX()*1000,
point_in.getY()*1000,point_in.getZ()*1000])
self.energy_step.append(edep)
def save_geant4_events(eventID,edep_device,edep_device1,edep_device2,p_step,energy_step,event_angle):
if(len(p_step)>0):
s_eventIDs.append(eventID)
s_edep_devices.append(edep_device)
s_edep_devices1.append(edep_device1)
s_edep_devices2.append(edep_device2)
s_p_steps.append(p_step)
s_energy_steps.append(energy_step)
s_events_angle.append(event_angle)
else:
s_eventIDs.append(eventID)
s_edep_devices.append(edep_device)
s_edep_devices1.append(edep_device1)
s_edep_devices2.append(edep_device2)
s_p_steps.append([[0,0,0]])
s_energy_steps.append([0])
s_events_angle.append(event_angle)
def cal_angle(point_a,point_b):
"Calculate the angle between point a and b"
x=np.array(point_a)
y=np.array(point_b)
l_x=np.sqrt(x.dot(x))
l_y=np.sqrt(y.dot(y))
dot_product=x.dot(y)
if l_x*l_y > 0:
cos_angle_d=dot_product/(l_x*l_y)
angle_d=np.arccos(cos_angle_d)*180/np.pi
else:
angle_d=9999
return angle_d
class MySteppingAction(g4b.G4UserSteppingAction):
"My Stepping Action"
def __init__(self, eventAction):
g4b.G4UserSteppingAction.__init__(self)
self.fEventAction = eventAction
def UserSteppingAction(self, step):
edep = step.GetTotalEnergyDeposit()
point_pre = step.GetPreStepPoint()
point_post = step.GetPostStepPoint()
point_in = point_pre.GetPosition()
point_out = point_post.GetPosition()
volume = step.GetPreStepPoint().GetTouchable().GetVolume().GetLogicalVolume()
volume_name = volume.GetName()
if(volume_name == "Device"):
self.fEventAction.RecordDevice(edep,point_in,point_out)
if(volume_name == "Device1"):
self.fEventAction.RecordDevice1(edep,point_in,point_out)
if(volume_name == "Device2"):
self.fEventAction.RecordDevice2(edep,point_in,point_out)
class MyActionInitialization(g4b.G4VUserActionInitialization):
def __init__(self,par_in,par_out):
g4b.G4VUserActionInitialization.__init__(self)
self.par_in = par_in
self.par_out = par_out
def Build(self):
self.SetUserAction(MyPrimaryGeneratorAction(self.par_in,
self.par_out))
# global myRA_action
myRA_action = MyRunAction()
self.SetUserAction(myRA_action)
myEA = MyEventAction(myRA_action,self.par_in,self.par_out)
self.SetUserAction(myEA)
self.SetUserAction(MySteppingAction(myEA))