Skip to content
Snippets Groups Projects
g4_si_itk.py 19.5 KiB
Newer Older
Xin Shi's avatar
Xin Shi committed
import geant4_pybind as g4b
import sys
import os
import ROOT
import numpy as np
import math
import time

class SiITk:
    def __init__(self, my_d, my_f, dset):

        g4_dic = dset.pygeant4
        my_g4d = MyDetectorConstruction(my_d,my_f,g4_dic['det_model'],g4_dic['maxstep'])		
        if g4_dic['g4_vis']: 
            ui = None
            ui = g4b.G4UIExecutive(len(sys.argv), sys.argv)
        g4RunManager = g4b.G4RunManagerFactory.CreateRunManager(g4b.G4RunManagerType.Default)
        rand_engine= g4b.RanecuEngine()
        g4b.HepRandom.setTheEngine(rand_engine)
        g4b.HepRandom.setTheSeed(dset.g4seed)
        g4RunManager.SetUserInitialization(my_g4d)	
        # set physics list
        physics_list =  g4b.FTFP_BERT()
        physics_list.SetVerboseLevel(1)
        physics_list.RegisterPhysics(g4b.G4StepLimiterPhysics())
        g4RunManager.SetUserInitialization(physics_list)
        # define global parameter
        global s_eventIDs,s_edep_devices,s_edep_devices1,s_edep_devices2,s_p_steps,s_energy_steps,s_events_angle
        s_eventIDs,s_edep_devices,s_edep_devices1,s_edep_devices2,s_p_steps,s_energy_steps,s_events_angle=[],[],[],[],[],[],[]
        
        global hitsdata_EvID,hitsdata_dirx,hitsdata_diry,hitsdata_dirz,hitsdata_edep1,hitsdata_edep2
        hitsdata_EvID,hitsdata_dirx,hitsdata_diry,hitsdata_dirz,hitsdata_edep1,hitsdata_edep2=0,0,0,0,0,0
        
        print('\n\n\n'+str(hitsdata_edep1)+'\n\n\n')
        
        #define action
        g4RunManager.SetUserInitialization(MyActionInitialization(
                                          g4_dic['par_in'],
                                          g4_dic['par_out']))
        if g4_dic['g4_vis']:    
            visManager = g4b.G4VisExecutive()
            visManager.Initialize()
            UImanager = g4b.G4UImanager.GetUIpointer()
Chenxi Fu's avatar
Chenxi Fu committed
            UImanager.ApplyCommand('/control/execute param_file/g4macro/init_vis.mac')
Xin Shi's avatar
Xin Shi committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        else:
            UImanager = g4b.G4UImanager.GetUIpointer()
            UImanager.ApplyCommand('/run/initialize')
            
        g4RunManager.BeamOn(int(dset.total_events))
        
        if g4_dic['g4_vis']:  
            ui.SessionStart()
        self.p_steps=s_p_steps
        #print(s_p_steps)
        self.init_tz_device = my_g4d.init_tz_device
        self.p_steps_current=[[[single_step[0],single_step[1],single_step[2]-self.init_tz_device]\
            for single_step in p_step] for p_step in self.p_steps]
        self.edep_devices=s_edep_devices
        self.edep_devices1=s_edep_devices1
        self.edep_devices2=s_edep_devices2
        self.events_angle=s_events_angle

        hittotal=0
        for particleenergy in s_edep_devices:
            if(particleenergy>0):
                hittotal=hittotal+1
        self.hittotal=hittotal      #count the number of hit particles

        number=0
        total_steps=0
        for step in s_p_steps:
            total_steps=len(step)+total_steps
        average_steps=total_steps/len(s_p_steps)
        for step in s_p_steps:
            if(len(step)>average_steps):
                break
            number=number+1
        newtype_step=s_p_steps[number]      #new particle's step
        self.p_steps_current=[[[single_step[0],single_step[1],single_step[2]-self.init_tz_device]\
            for single_step in newtype_step]]

        newtype_energy=[0 for i in range(len(newtype_step))]
        for energy in s_energy_steps:
            for i in range(len(newtype_step)):
                if(len(energy)>i):
                    newtype_energy[i]+=energy[i]
        self.energy_steps=[newtype_energy]      #new particle's every step' energy
        

        del s_eventIDs,s_edep_devices,s_edep_devices1,s_edep_devices2,s_p_steps,s_energy_steps,s_events_angle
        del hitsdata_EvID,hitsdata_dirx,hitsdata_diry,hitsdata_dirz,hitsdata_edep1,hitsdata_edep2
        
    def __del__(self):
        pass


# #my adding 3
# class MyTrackerHit(g4b.G4VHit):

#     def __init__(self, trackID, chamberNb, edep, pos):
#         super().__init__()
#         self.fTrackID = trackID
#         self.fChamberNb = chamberNb
#         self.fEdep = edep
#         self.fPos = pos

#     def Draw(self):
#         vVisManager = G4VVisManager.GetConcreteInstance()
#         if vVisManager != None:
#             circle = G4Circle(self.fPos)
#             circle.SetScreenSize(4)
#             circle.SetFillStyle(G4Circle.filled)
#             colour = G4Colour(1, 0, 0)
#             attribs = G4VisAttributes(colour)
#             circle.SetVisAttributes(attribs)
#             vVisManager.Draw(circle)

#     def Print(self):
#         print("trackID:", self.fTrackID, "chamberNb:", self.fChamberNb, "Edep:", end=" ")
#         print(G4BestUnit(self.fEdep, "Energy"), "Position:", G4BestUnit(self.fPos, "Length"))


# #my adding 1
# class MyHitsCollection(g4b.G4VHitsCollection):
#     def __init__(self, detName, colNam):
#         super().__init__(detName, colNam)
#         self.collection = []

#     def __getitem__(self, i):
#         return self.collection[i]

#     def insert(self, item):
#         self.collection.append(item)

#     def GetHit(self, i):
#         return self.collection[i]

#     def GetSize(self):
#         return len(self.collection)


# #my adding 2
# class MyTrackerSD(g4b.G4VSensitiveDetector):

#     def __init__(self, name, hitsCollectionName):
#         super().__init__(name)
#         self.collectionName.insert(hitsCollectionName)

#     def Initialize(self, hce):
#         # Create hits collection
#         #self.fHitsCollection = None
#         self.fHitsCollection = MyHitsCollection(
#             self.SensitiveDetectorName, self.collectionName[0])

#         # Add this collection in hce
#         hcID = g4b.G4SDManager.GetSDMpointer().GetCollectionID(self.collectionName[0])
#         hce.AddHitsCollection(hcID, self.fHitsCollection)

#     def ProcessHits(self, aStep, rOhist):
#         # energy deposit
#         edep = aStep.GetTotalEnergyDeposit()
#         if edep == 0:
#             return False

#         newHit = MyTrackerHit(aStep.GetTrack().GetTrackID(),
#                               aStep.GetPreStepPoint().GetTouchable().GetCopyNumber(),
#                               edep,
#                               aStep.GetPostStepPoint().GetPosition())

#         self.fHitsCollection.insert(newHit)
#         # newHit.Print()
#         return True



class MyDetectorConstruction(g4b.G4VUserDetectorConstruction):                
    "My Detector Construction"
    def __init__(self,my_d,my_f,sensor_model,maxStep=0.5):
        g4b.G4VUserDetectorConstruction.__init__(self)
        self.solid = {}
        self.logical = {}
        self.physical = {}
        self.checkOverlaps = True
        self.create_world(my_d)
        #3D source order: beta->sic->si
        #2D source order: beta->Si->SiC
        tx_all = my_d.l_x/2.0*g4b.um
        ty_all = my_d.l_y/2.0*g4b.um
        if "planar3D" or "lgad3D" in sensor_model:
            tz_device = my_d.l_z/2.0*g4b.um
            self.init_tz_device = 0
            device_x = my_d.l_x*g4b.um 
            device_y = my_d.l_y*g4b.um
            device_z = my_d.l_z*g4b.um
        self.create_si_box(
                            name = "Device",
                            sidex = device_x,
                            sidey = device_y,
                            sidez = device_z,
                            translation = [tx_all,ty_all,tz_device],
                            material_si = "G4_Si",
                            colour = [1,0,0],
                            mother = 'world')
        
        self.create_si_box(
                            name = "Device1",
                            sidex = device_x,
                            sidey = device_y,
                            sidez = device_z,
                            translation = [tx_all,ty_all,tz_device-device_z],
                            material_si = "G4_Si",
                            colour = [1,0,0],
                            mother = 'world')

        self.create_Al_box(
                            name = "Sheet",
                            sidex = 10000*g4b.um,
                            sidey = 10000*g4b.um,
                            sidez = device_z,
                            translation = [tx_all,ty_all,tz_device-2*device_z],
                            colour = [2,0,0],
                            mother = 'world')
        
        self.create_si_box(
                            name = "Device2",
                            sidex = device_x,
                            sidey = device_y,
                            sidez = device_z,
                            translation = [tx_all,ty_all,tz_device-3*device_z],
                            material_si = "G4_Si",
                            colour = [3,0,0],
                            mother = 'world')
        
        self.create_Al_box(
                            name = "Foil",
                            sidex = 5000*g4b.um,
                            sidey = 5000*g4b.um,
                            sidez = 10*g4b.um,
                            translation = [tx_all,ty_all,tz_device-3*device_z-10*g4b.um],
                            colour = [2,0,0],
                            mother = 'world')
        


        self.maxStep = maxStep*g4b.um
        self.fStepLimit = g4b.G4UserLimits(self.maxStep)
        self.logical["Device"].SetUserLimits(self.fStepLimit)

    def create_world(self,my_d):

        self.nist = g4b.G4NistManager.Instance()
        material = self.nist.FindOrBuildMaterial("G4_AIR")  
        self.solid['world'] = g4b.G4Box("world",
                                        25000*g4b.um,
                                        25000*g4b.um,
                                        25000*g4b.um)
        self.logical['world'] = g4b.G4LogicalVolume(self.solid['world'], 
                                                    material, 
                                                    "world")
        self.physical['world'] = g4b.G4PVPlacement(None, 
                                                   g4b.G4ThreeVector(0,0,0), 
                                                   self.logical['world'], 
                                                   "world", None, False, 
                                                   0,self.checkOverlaps)
        visual = g4b.G4VisAttributes()
        visual.SetVisibility(False)
        self.logical['world'].SetVisAttributes(visual)

    def create_Al_box(self, **kwargs):
        name = kwargs['name']
        material_Al = self.nist.FindOrBuildMaterial("G4_Al")
        translation = g4b.G4ThreeVector(*kwargs['translation'])
        visual = g4b.G4VisAttributes(g4b.G4Color(*kwargs['colour']))
        mother = self.physical[kwargs['mother']]
        sidex = kwargs['sidex']
        sidey = kwargs['sidey']
        sidez = kwargs['sidez']

        self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
        
        self.logical[name] = g4b.G4LogicalVolume(self.solid[name], 
                                                 material_Al, 
                                                 name)
        self.physical[name] = g4b.G4PVPlacement(None,translation,                                                
                                                name,self.logical[name],
                                                mother, False, 
                                                0,self.checkOverlaps)
        self.logical[name].SetVisAttributes(visual)


    def create_si_box(self, **kwargs):
        name = kwargs['name']
        material_si = self.nist.FindOrBuildMaterial(kwargs['material_si'],False)

        translation = g4b.G4ThreeVector(*kwargs['translation'])
        visual = g4b.G4VisAttributes(g4b.G4Color(*kwargs['colour']))
        mother = self.physical[kwargs['mother']]
        sidex = kwargs['sidex']
        sidey = kwargs['sidey']
        sidez = kwargs['sidez']

        self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
        self.logical[name] = g4b.G4LogicalVolume(self.solid[name], 
                                                 material_si, 
                                                 name)
        self.physical[name] = g4b.G4PVPlacement(None,translation,                                                
                                                name,self.logical[name],
                                                mother, False, 
                                                0,self.checkOverlaps)
        self.logical[name].SetVisAttributes(visual)
    
    def Construct(self): # return the world volume
        self.fStepLimit.SetMaxAllowedStep(self.maxStep)
        return self.physical['world']

# #my adding 4
#     def ConstructSDandField(self):
#         # Sensitive detectors
#         trackerChamberSDname = "B2/TrackerChamberSD"
#         self.aTrackerSD = MyTrackerSD(trackerChamberSDname, "TrackerHitsCollection")
#         g4b.G4SDManager.GetSDMpointer().AddNewDetector(self.aTrackerSD)
#         # Setting aTrackerSD to all logical volumes with the same name
#         # of "Chamber_LV".
#         self.SetSensitiveDetector("Chamber_LV", self.aTrackerSD, True)

#         # Create global magnetic field messenger.
#         # Uniform magnetic field is then created automatically if
#         # the field value is not zero.
#         fieldValue = G4ThreeVector()
#         self.fMagFieldMessenger = G4GlobalMagFieldMessenger(fieldValue)
#         self.fMagFieldMessenger.SetVerboseLevel(1)


class MyPrimaryGeneratorAction(g4b.G4VUserPrimaryGeneratorAction):
    "My Primary Generator Action"
    def __init__(self,par_in,par_out):
        g4b.G4VUserPrimaryGeneratorAction.__init__(self)
        par_direction = [ par_out[i] - par_in[i] for i in range(3) ]  
        particle_table = g4b.G4ParticleTable.GetParticleTable()
        electron = particle_table.FindParticle("proton") # define the proton
        beam = g4b.G4ParticleGun(1)
        beam.SetParticleEnergy(80*g4b.MeV)
        # beam.SetParticleEnergy(1600*g4b.MeV)
        beam.SetParticleMomentumDirection(g4b.G4ThreeVector(par_direction[0],
                                                            par_direction[1],
                                                            par_direction[2]))
        beam.SetParticleDefinition(electron)
        beam.SetParticlePosition(g4b.G4ThreeVector(par_in[0]*g4b.um,
                                                   par_in[1]*g4b.um,
                                                   par_in[2]*g4b.um))  
        self.particleGun = beam
    
    def GeneratePrimaries(self, event):
        self.particleGun.GeneratePrimaryVertex(event)


class MyRunAction(g4b.G4UserRunAction):
    def __init__(self):
        g4b.G4UserRunAction.__init__(self)
        milligray = 1.e-3*g4b.gray
        microgray = 1.e-6*g4b.gray
        nanogray = 1.e-9*g4b.gray
        picogray = 1.e-12*g4b.gray

        g4b.G4UnitDefinition("milligray", "milliGy", "Dose", milligray)
        g4b.G4UnitDefinition("microgray", "microGy", "Dose", microgray)
        g4b.G4UnitDefinition("nanogray", "nanoGy", "Dose", nanogray)
        g4b.G4UnitDefinition("picogray", "picoGy", "Dose", picogray)
      
    def BeginOfRunAction(self, run):
        g4b.G4RunManager.GetRunManager().SetRandomNumberStore(False)
   
    def EndOfRunAction(self, run):
        nofEvents = run.GetNumberOfEvent()
        if nofEvents == 0:
            print("nofEvents=0")
            return

class MyEventAction(g4b.G4UserEventAction):
    "My Event Action"
    def __init__(self, runAction, point_in, point_out):
        g4b.G4UserEventAction.__init__(self)
        self.fRunAction = runAction
        self.point_in = point_in
        self.point_out = point_out

    def BeginOfEventAction(self, event):
        self.edep_device=0.
        self.edep_device1=0.
        self.edep_device2=0.
        self.event_angle = 0.
        self.p_step = []
        self.energy_step = []
        

    def EndOfEventAction(self, event):
        eventID = event.GetEventID()
        #print("eventID:%s"%eventID)
        if len(self.p_step):
            point_a = [ b-a for a,b in zip(self.point_in,self.point_out)]
            point_b = [ c-a for a,c in zip(self.point_in,self.p_step[-1])]
            self.event_angle = cal_angle(point_a,point_b)
        else:
            self.event_angle = None
        save_geant4_events(eventID,self.edep_device,self.edep_device1,self.edep_device2,
                           self.p_step,self.energy_step,self.event_angle)
     

    def RecordDevice(self, edep,point_in,point_out):
        self.edep_device += edep
        self.p_step.append([point_in.getX()*1000,
                           point_in.getY()*1000,point_in.getZ()*1000])
        self.energy_step.append(edep)

    def RecordDevice1(self, edep,point_in,point_out):
        self.edep_device1 += edep
        self.p_step.append([point_in.getX()*1000,
                           point_in.getY()*1000,point_in.getZ()*1000])
        self.energy_step.append(edep)    

    def RecordDevice2(self, edep,point_in,point_out):
        self.edep_device2 += edep
        self.p_step.append([point_in.getX()*1000,
                           point_in.getY()*1000,point_in.getZ()*1000])
        self.energy_step.append(edep)  

def save_geant4_events(eventID,edep_device,edep_device1,edep_device2,p_step,energy_step,event_angle):
    if(len(p_step)>0):
        s_eventIDs.append(eventID)
        s_edep_devices.append(edep_device)
        s_edep_devices1.append(edep_device1)
        s_edep_devices2.append(edep_device2)
        s_p_steps.append(p_step)
        s_energy_steps.append(energy_step)
        s_events_angle.append(event_angle)
    else:
        s_eventIDs.append(eventID)
        s_edep_devices.append(edep_device)
        s_edep_devices1.append(edep_device1)
        s_edep_devices2.append(edep_device2)
        s_p_steps.append([[0,0,0]])
        s_energy_steps.append([0])
        s_events_angle.append(event_angle)
        


def cal_angle(point_a,point_b):
    "Calculate the angle between point a and b"
    x=np.array(point_a)
    y=np.array(point_b)
    l_x=np.sqrt(x.dot(x))
    l_y=np.sqrt(y.dot(y))
    dot_product=x.dot(y)
    if l_x*l_y > 0:
        cos_angle_d=dot_product/(l_x*l_y)
        angle_d=np.arccos(cos_angle_d)*180/np.pi
    else:
        angle_d=9999
    return angle_d


class MySteppingAction(g4b.G4UserSteppingAction):
    "My Stepping Action"
    def __init__(self, eventAction):
        g4b.G4UserSteppingAction.__init__(self)
        self.fEventAction = eventAction

    def UserSteppingAction(self, step):
        edep = step.GetTotalEnergyDeposit()
        point_pre  = step.GetPreStepPoint()
        point_post = step.GetPostStepPoint() 
        point_in   = point_pre.GetPosition()
        point_out  = point_post.GetPosition()
        volume = step.GetPreStepPoint().GetTouchable().GetVolume().GetLogicalVolume()
        volume_name = volume.GetName()
        if(volume_name == "Device"):
            self.fEventAction.RecordDevice(edep,point_in,point_out)
        if(volume_name == "Device1"):
            self.fEventAction.RecordDevice1(edep,point_in,point_out)
        if(volume_name == "Device2"):
            self.fEventAction.RecordDevice2(edep,point_in,point_out)
            


class MyActionInitialization(g4b.G4VUserActionInitialization):
    def __init__(self,par_in,par_out):
        g4b.G4VUserActionInitialization.__init__(self)
        self.par_in = par_in
        self.par_out = par_out

    def Build(self):
        self.SetUserAction(MyPrimaryGeneratorAction(self.par_in,
                                                    self.par_out))
        # global myRA_action
        myRA_action = MyRunAction()
        self.SetUserAction(myRA_action)
        myEA = MyEventAction(myRA_action,self.par_in,self.par_out)
        self.SetUserAction(myEA)
        self.SetUserAction(MySteppingAction(myEA))