Newer
Older
#ifndef _TRACKCLUSTERCONNECTING_ALG_C
#define _TRACKCLUSTERCONNECTING_ALG_C
#include "Algorithm/TrackClusterConnectingAlg.h"
StatusCode TrackClusterConnectingAlg::ReadSettings(Settings& m_settings){
settings = m_settings;
//Initialize parameters
if(settings.map_stringPars.find("ReadinECALClusterName")==settings.map_stringPars.end()) settings.map_stringPars["ReadinECALClusterName"] = "EcalCluster";
if(settings.map_stringPars.find("ReadinHCALClusterName")==settings.map_stringPars.end()) settings.map_stringPars["ReadinHCALClusterName"] = "HcalCluster";
if(settings.map_floatPars.find("ECALChargedCalib")==settings.map_floatPars.end()) settings.map_floatPars["ECALChargedCalib"] = 1.26;
if(settings.map_floatPars.find("HCALChargedCalib")==settings.map_floatPars.end()) settings.map_floatPars["HCALChargedCalib"] = 4.0;
if(settings.map_floatPars.find("ECALNeutralCalib")==settings.map_floatPars.end()) settings.map_floatPars["ECALNeutralCalib"] = 1.0;
if(settings.map_floatPars.find("HCALNeutralCalib")==settings.map_floatPars.end()) settings.map_floatPars["HCALNeutralCalib"] = 4.0;
if(settings.map_floatPars.find("th_ChFragEn")==settings.map_floatPars.end()) settings.map_floatPars["th_ChFragEn"] = 2.;
if(settings.map_floatPars.find("th_ChFragDepth")==settings.map_floatPars.end()) settings.map_floatPars["th_ChFragDepth"] = 100.;
if(settings.map_floatPars.find("th_ChFragMinR")==settings.map_floatPars.end()) settings.map_floatPars["th_ChFragMinR"] = 200.;
if(settings.map_floatPars.find("th_HcalMatchingR")==settings.map_floatPars.end()) settings.map_floatPars["th_HcalMatchingR"] = 100.;
if(settings.map_floatPars.find("th_MIPEnergy")==settings.map_floatPars.end()) settings.map_floatPars["th_MIPEnergy"] = 0.5;
if(settings.map_floatPars.find("th_AbsorbCone")==settings.map_floatPars.end()) settings.map_floatPars["th_AbsorbCone"] = 0.8;
if(settings.map_stringPars.find("OutputMergedECALCluster")==settings.map_stringPars.end()) settings.map_stringPars["OutputMergedECALCluster"] = "TrkMergedECAL";
if(settings.map_stringPars.find("OutputCombPFO")==settings.map_stringPars.end()) settings.map_stringPars["OutputCombPFO"] = "outputPFO";
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::Initialize( CyberDataCol& m_datacol ){
m_EcalClusters.clear();
m_HcalClusters.clear();
m_tracks.clear();
m_absorbedEcal.clear();
m_PFObjects.clear();
m_bkCol.Clear();
for(int ic=0; ic<m_datacol.map_CaloCluster[settings.map_stringPars["ReadinECALClusterName"]].size(); ic++){
m_EcalClusters.push_back( m_datacol.map_CaloCluster[settings.map_stringPars["ReadinECALClusterName"]][ic].get() );
}
for(int ic=0; ic<m_datacol.map_CaloCluster[settings.map_stringPars["ReadinHCALClusterName"]].size(); ic++){
m_HcalClusters.push_back( m_datacol.map_CaloCluster[settings.map_stringPars["ReadinHCALClusterName"]][ic].get() );
}
for(int itrk=0; itrk<m_datacol.TrackCol.size(); itrk++){
m_tracks.push_back( m_datacol.TrackCol[itrk].get() );
}

guofangyi@ihep.ac.cn
committed
/*
cout<<"Readin Track size: "<<m_tracks.size()<<", ECAL cluster size: "<<m_EcalClusters.size()<<", HCAL cluster size "<<m_HcalClusters.size()<<endl;
cout<<"Print track"<<endl;
for(int i=0; i<m_tracks.size(); i++)
cout<<"Track #"<<i<<": P = "<<m_tracks[i]->getMomentum()<<", Pt = "<<m_tracks[i]->getPt()<<endl;
cout<<"Print all ECAL cluster "<<endl;
for(int ic=0; ic<m_EcalClusters.size(); ic++){
cout<<" ECAL Cluster #"<<ic<<": En = "<<m_EcalClusters[ic]->getLongiE()<<", track size "<<m_EcalClusters[ic]->getAssociatedTracks().size();
if(m_EcalClusters[ic]->getAssociatedTracks().size()>0) cout<<", Leading track P = "<<m_EcalClusters[ic]->getAssociatedTracks()[0]->getMomentum()<<endl;
else cout<<endl;
}
*/
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::RunAlgorithm( CyberDataCol& m_datacol ){
//Readin: tracks, ECAL clusters and HCAL clusters.
//Output: PFObject
//1. Merge ECAL clusters.
//Possible to add some cluster ID and merge functions.
m_absorbedEcal.clear();
EcalChFragAbsorption(m_EcalClusters, m_tracks, m_absorbedEcal);
//cout<<" TrackClusterConnectingAlg: After ECAL charged fragment absorption: cluster size "<<m_absorbedEcal.size()<<endl;
//cout<<"Print merged ECAL cluster "<<endl;
//for(int ic=0; ic<m_absorbedEcal.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_absorbedEcal[ic]->getLongiE()<<", track size "<<m_absorbedEcal[ic]->getAssociatedTracks().size();
// if(m_absorbedEcal[ic]->getAssociatedTracks().size()>0) cout<<", Leading track P = "<<m_absorbedEcal[ic]->getAssociatedTracks()[0]->getMomentum()<<endl;
// else cout<<endl;
//}
//2. Create PFObject with ECAL cluster and track
std::vector<const Cyber::Calo3DCluster*> tmp_constClus;
for(int ic=0; ic<m_absorbedEcal.size(); ic++) tmp_constClus.push_back(m_absorbedEcal[ic].get());
PFOCreating(tmp_constClus, m_tracks, m_PFObjects);
//cout<<" TrackClusterConnectingAlg: created PFO: "<<m_PFObjects.size()<<endl;
//for(int i=0; i<m_PFObjects.size(); i++){
// cout<<" PFO #"<<i<<": track size "<<m_PFObjects[i]->getTracks().size()<<", leading P "<<m_PFObjects[i]->getTrackMomentum();
// cout<<", ECAL cluster size "<<m_PFObjects[i]->getECALClusters().size()<<", totE "<<m_PFObjects[i]->getECALClusterEnergy();
// cout<<", HCAL cluster size "<<m_PFObjects[i]->getHCALClusters().size()<<", totE "<<m_PFObjects[i]->getHCALClusterEnergy()<<endl;
//}
//cout<<"Print all HCAL cluster"<<endl;
//double totE_Hcal = 0;
//for(int i=0; i<m_HcalClusters.size(); i++){
// printf(" HCAL Cluster #%d: En = %.6f, position (%.3f, %.3f, %.3f) \n", i,
// m_HcalClusters[i]->getHitsE(),
// m_HcalClusters[i]->getHitCenter().x(),
// m_HcalClusters[i]->getHitCenter().y(),
// m_HcalClusters[i]->getHitCenter().z() );
// totE_Hcal += m_HcalClusters[i]->getHitsE();
//}
//cout<<"Hcal cluster total E "<<totE_Hcal<<endl;
//3. Add HCAL clusters into the PFObject.
std::sort(m_PFObjects.begin(), m_PFObjects.end(), compTrkP);
HcalExtrapolatingMatch(m_HcalClusters, m_PFObjects);

guofangyi@ihep.ac.cn
committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
//cout<<" TrackClusterConnectingAlg: PFO size after HCAL matching: "<<m_PFObjects.size()<<endl;
//for(int i=0; i<m_PFObjects.size(); i++){
// cout<<" PFO #"<<i<<": track size "<<m_PFObjects[i]->getTracks().size()<<", leading P "<<m_PFObjects[i]->getTrackMomentum();
// cout<<", ECAL cluster size "<<m_PFObjects[i]->getECALClusters().size()<<", totE "<<m_PFObjects[i]->getECALClusterEnergy();
// cout<<", HCAL cluster size "<<m_PFObjects[i]->getHCALClusters().size()<<", totE "<<m_PFObjects[i]->getHCALClusterEnergy()<<endl;
//}
m_datacol.map_CaloCluster[ settings.map_stringPars["OutputMergedECALCluster"] ] = m_absorbedEcal;
m_datacol.map_PFObjects[settings.map_stringPars["OutputCombPFO"]] = m_PFObjects;
m_datacol.map_CaloCluster["bk3DCluster"].insert( m_datacol.map_CaloCluster["bk3DCluster"].end(), m_bkCol.map_CaloCluster["bk3DCluster"].begin(), m_bkCol.map_CaloCluster["bk3DCluster"].end() );
m_datacol.map_PFObjects["bkPFO"].insert( m_datacol.map_PFObjects["bkPFO"].end(), m_bkCol.map_PFObjects["bkPFO"].begin(), m_bkCol.map_PFObjects["bkPFO"].end() );
m_datacol.map_PFObjects["bkPFO"].insert( m_datacol.map_PFObjects["bkPFO"].end(), m_PFObjects.begin(), m_PFObjects.end() );
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::ClearAlgorithm(){
m_EcalClusters.clear();
m_HcalClusters.clear();
m_tracks.clear();
m_absorbedEcal.clear();
m_PFObjects.clear();
m_bkCol.Clear();
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::PFOCreating( std::vector<const Cyber::Calo3DCluster*>& m_clusters,
std::vector<const Cyber::Track*>& m_trks,
std::vector<std::shared_ptr<Cyber::PFObject>>& m_PFOs ){
//cout<<" PFOCreating: Track size "<<m_trks.size()<<", Cluster size "<<m_clusters.size()<<endl;
//for(int ic=0; ic<m_clusters.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_clusters[ic]->getLongiE()<<", track size "<<m_clusters[ic]->getAssociatedTracks().size();
// if(m_clusters[ic]->getAssociatedTracks().size()>0) cout<<", Leading track P = "<<m_clusters[ic]->getAssociatedTracks()[0]->getMomentum()<<endl;
// else cout<<endl;
//}
std::vector<const Cyber::Track*> m_leftTrks = m_trks;
for(int ic=0; ic<m_clusters.size(); ic++){
std::shared_ptr<Cyber::PFObject> m_newPFO = std::make_shared<Cyber::PFObject>();
m_newPFO->addECALCluster( m_clusters[ic] );
std::vector<const Cyber::Track*> m_trkInClus = m_clusters[ic]->getAssociatedTracks();
if(m_trkInClus.size()!=0){
m_newPFO->addTrack( m_trkInClus[0] );
auto iter = find(m_leftTrks.begin(), m_leftTrks.end(), m_trkInClus[0]);
if( iter!=m_leftTrks.end() )
m_leftTrks.erase(iter);
}
m_PFOs.push_back(m_newPFO);
m_bkCol.map_PFObjects["bkPFO"].push_back(m_newPFO);
}
for(int itrk=0; itrk<m_leftTrks.size(); itrk++){
std::shared_ptr<Cyber::PFObject> m_newPFO = std::make_shared<Cyber::PFObject>();
m_newPFO->addTrack( m_leftTrks[itrk] );
m_PFOs.push_back(m_newPFO);
m_bkCol.map_PFObjects["bkPFO"].push_back(m_newPFO);
}
return StatusCode::SUCCESS;
}
StatusCode TrackClusterConnectingAlg::EcalChFragAbsorption( std::vector<const Cyber::Calo3DCluster*>& m_clusters,
std::vector<const Cyber::Track*>& m_trks,
std::vector<std::shared_ptr<Cyber::Calo3DCluster>>& m_newclusCol){
//cout<<" In EcalChFragAbsorption: Input track size "<<m_trks.size()<<", cluster size "<<m_clusters.size()<<endl;
//for(int ic=0; ic<m_clusters.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_clusters[ic]->getLongiE()<<", track size "<<m_clusters[ic]->getAssociatedTracks().size()<<endl;
//}
//1. Absorb neutral clusters to the nearby tracks
std::map<const Cyber::Track*, int> m_matchedTrkMap;
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
for(int ic=0; ic<m_clusters.size(); ic++){
for(int itrk=0; itrk<m_clusters[ic]->getAssociatedTracks().size(); itrk++){
if( find(m_trks.begin(), m_trks.end(), m_clusters[ic]->getAssociatedTracks()[itrk])!=m_trks.end() )
m_matchedTrkMap[m_clusters[ic]->getAssociatedTracks()[itrk]] = ic;
}
}
//cout<<" Matched track size: "<<m_matchedTrkMap.size()<<endl;
for(int ic=0; ic<m_clusters.size(); ic++){
if(m_clusters[ic]->getAssociatedTracks().size()!=0) continue;
double clusDepth = m_clusters[ic]->getDepthToECALSurface();
double clusEn = m_clusters[ic]->getLongiE();
double minR2trk = 9999;
int index = -1;
for(int itrk=0; itrk<m_trks.size(); itrk++){
double tmp_minR = GetMinR2Trk( m_clusters[ic], m_trks[itrk]);
if(tmp_minR<minR2trk){
minR2trk = tmp_minR;
index = itrk;
}
}
//cout<<" Clus #"<<ic<<": depth "<<clusDepth<<", En "<<clusEn<<", minR "<<minR2trk<<", index "<<index<<endl;
//if(index<0){
// std::cout<<"ERROR: can not find closest track "<<endl;
// continue;
//}
if( clusEn<settings.map_floatPars["th_ChFragEn"] && clusDepth>settings.map_floatPars["th_ChFragDepth"] && minR2trk<settings.map_floatPars["th_ChFragMinR"]){
const Cyber::Track* p_selTrk = m_trks[index]; //Closest track to this cluster.
if( m_matchedTrkMap.find(p_selTrk)==m_matchedTrkMap.end() ){ //This track does not match to any existing charged cluster
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = m_clusters[ic]->Clone();
m_newclus->addAssociatedTrack(p_selTrk);
m_newclusCol.push_back( m_newclus );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
}
else{
int tmp_index = m_matchedTrkMap[p_selTrk];
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = m_clusters[tmp_index]->Clone();
m_newclus->mergeCluster(m_clusters[ic]);
m_newclusCol.push_back( m_newclus );
m_matchedTrkMap.erase(p_selTrk);
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
}
}
else{
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = m_clusters[ic]->Clone();
m_newclusCol.push_back( m_newclus );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
}
}
for(auto iter: m_matchedTrkMap){
std::shared_ptr<Cyber::Calo3DCluster> m_newclus = m_clusters[iter.second]->Clone();
m_newclusCol.push_back( m_newclus );
m_bkCol.map_CaloCluster["bk3DCluster"].push_back(m_newclus);
}
//Merge clusters if linked to the same track
for(int ic=0; ic<m_newclusCol.size() && m_newclusCol.size()>1; ic++){
if(m_newclusCol[ic].get()->getAssociatedTracks().size()==0) continue;
std::vector<const Cyber::Track*> m_trkCol = m_newclusCol[ic].get()->getAssociatedTracks();
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
for(int jc=ic+1; jc<m_newclusCol.size(); jc++){
if(m_newclusCol[jc].get()->getAssociatedTracks().size()==0) continue;
for(int itrk=0; itrk<m_newclusCol[jc].get()->getAssociatedTracks().size(); itrk++){
if( find(m_trkCol.begin(), m_trkCol.end(), m_newclusCol[jc].get()->getAssociatedTracks()[itrk])!= m_trkCol.end() ){
m_newclusCol[ic].get()->mergeCluster( m_newclusCol[jc].get() );
m_newclusCol.erase(m_newclusCol.begin()+jc);
jc--;
if(jc<ic) jc=ic;
}
break;
}
}
}
for(int ic=0; ic<m_newclusCol.size(); ic++) m_newclusCol[ic].get()->getLinkedMCPfromHFCluster("LinkedLongiCluster");
//cout<<"After nearby absorption: Print ECAL cluster "<<endl;
//for(int ic=0; ic<m_newclusCol.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_newclusCol[ic]->getLongiE()<<", track size "<<m_newclusCol[ic]->getAssociatedTracks().size();
// if(m_newclusCol[ic]->getAssociatedTracks().size()>0) cout<<", Leading track P = "<<m_newclusCol[ic]->getAssociatedTracks()[0]->getMomentum()<<endl;
// else cout<<endl;
//}
//2. Find the shower vertex, absorb nearby neutral clusters (in a cone) into it.
std::vector<std::shared_ptr<Cyber::Calo3DCluster>> m_newChCluster;
std::vector<std::shared_ptr<Cyber::Calo3DCluster>> m_newNeuCluster;
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
for(int icl=0; icl<m_newclusCol.size(); icl++){
if(m_newclusCol[icl]->getAssociatedTracks().size()==0 ) m_newNeuCluster.push_back(m_newclusCol[icl]);
else m_newChCluster.push_back(m_newclusCol[icl]);
}
for(int icl=0; icl<m_newChCluster.size(); icl++){
TVector3 cent = m_newChCluster[icl]->getShowerCenter();
double tmp_Ecl = m_newChCluster[icl]->getLongiE();
//Veto mip clusters and Eclus>Ptrk
if(tmp_Ecl<settings.map_floatPars["th_MIPEnergy"]) continue;
if(tmp_Ecl>m_newChCluster[icl]->getAssociatedTracks()[0]->getMomentum()) continue;
//Absorb neutral clusters in a cone angle
for(int jcl=0; jcl<m_newNeuCluster.size(); jcl++){
//Do not absorb: En, Nhit, start layer,
TVector3 vec_pNeu = m_newNeuCluster[jcl]->getShowerCenter();
if( cent.Angle(vec_pNeu-cent)<settings.map_floatPars["th_AbsorbCone"] ){
m_newChCluster[icl]->mergeCluster(m_newNeuCluster[jcl].get());
auto iter = find(m_newclusCol.begin(), m_newclusCol.end(), m_newNeuCluster[jcl]);
m_newclusCol.erase(iter);
m_newNeuCluster.erase(m_newNeuCluster.begin()+jcl);
jcl--;
}
}
}
//Do cluster energy correction
for(int ic=0; ic<m_newclusCol.size(); ic++){
double tmp_clusE = m_newclusCol[ic]->getEnergy()*settings.map_floatPars.at("ECALNeutralCalib");
TVector3 clus_pos = m_newclusCol[ic]->getShowerCenter();
double tmp_phi = std::atan2(clus_pos.y(), clus_pos.x())* 180.0 / TMath::Pi(); //TODO: use TVector3 to calculate
if (tmp_phi < 0) tmp_phi += 360.0;
double tmp_theta = std::atan2(clus_pos.z(), clus_pos.Perp())* 180.0 / TMath::Pi() + 90;
double tmp_scale = m_bkCol.EnergyCorrSvc->energyCorrection(tmp_clusE, tmp_phi, tmp_theta)/tmp_clusE;
m_newclusCol[ic]->setEnergyScale( tmp_scale );
}
//for(int ic=0; ic<m_newclusCol.size(); ic++){
// cout<<" ECAL Cluster #"<<ic<<": En = "<<m_newclusCol[ic]->getLongiE()<<", track size "<<m_newclusCol[ic]->getAssociatedTracks().size()<<endl;
//}
return StatusCode::SUCCESS;
};
StatusCode TrackClusterConnectingAlg::HcalExtrapolatingMatch(std::vector<const Cyber::Calo3DCluster*>& m_clusters, std::vector<std::shared_ptr<Cyber::PFObject>>& m_PFOs){
for(int ic=0; ic<m_clusters.size(); ic++){
std::vector<const Cyber::CaloHit*> hcal_hits = m_clusters[ic]->getCaloHits();
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
//cout<<"HCAL Cluster #"<<ic<<": Nhit "<<hcal_hits.size()<<", En "<<m_clusters[ic]->getHitsE()<<endl;
bool isInPfo = false;
int index_selPfo = -1;
for(int ipfo=0; ipfo<m_PFOs.size(); ipfo++){
//Link HCAL cluster to charged PFO
if(m_PFOs[ipfo]->getTracks().size()!=0){
std::vector<TrackState> trk_points = m_PFOs[ipfo]->getTracks()[0]->getAllTrackStates();
bool is_candidate = false;
double minDistance = 99999;
for(int ihit=0; ihit<hcal_hits.size(); ihit++){
if(is_candidate) break;
TVector3 hit_pos = hcal_hits[ihit]->getPosition();
for(int ipts=0; ipts<trk_points.size(); ipts++){
TVector3 hit_distance = hit_pos - trk_points[ipts].referencePoint;;
if(minDistance>hit_distance.Mag()) minDistance = hit_distance.Mag();
if(hit_distance.Mag()<settings.map_floatPars["th_HcalMatchingR"]){
is_candidate = true;
break;
}
}
}
//cout<<" Min distance "<<minDistance<<", is candidate "<<is_candidate<<endl;
if(is_candidate){
//cout<<" Pfo #"<<ipfo<<": Ntrk "<<m_PFOs[ipfo]->getTracks().size()<<", leading trk P "<<m_PFOs[ipfo]->getTrackMomentum()<<", trk state size "<<trk_points.size()<<endl;
//cout<<" Link cluster #"<<ic<<" to pfo #"<<ipfo<<endl;
m_PFOs[ipfo]->addHCALCluster( m_clusters[ic] );
isInPfo = true;
index_selPfo = ipfo;
break;
}
}
//Link HCAL cluster to neutral PFO
}//end loop pfos
//if(isInPfo) cout<<" Merged into PFO: Ptrk = "<<m_PFOs[index_selPfo]->getTrackMomentum()<<endl;
//If HCAL cluster is not linked to any existing PFO: create a new one.
if(!isInPfo){
//cout<<" Create a new neutral PFO "<<endl;
std::shared_ptr<Cyber::PFObject> m_newPFO = std::make_shared<Cyber::PFObject>();
m_newPFO->addHCALCluster( m_clusters[ic] );
m_PFOs.push_back(m_newPFO);
m_bkCol.map_PFObjects["bkPFO"].push_back(m_newPFO);
}
}
return StatusCode::SUCCESS;
}
double TrackClusterConnectingAlg::GetMinR2Trk( const Cyber::Calo3DCluster* p_clus, const Cyber::Track* m_trk){
if(!p_clus || !m_trk) return 99999;
double minR = 99999;
int index = -1;
TVector3 clus_position = p_clus->getShowerCenter();
std::vector<TrackState> trk_points = m_trk->getAllTrackStates();
for(int i=0; i<trk_points.size(); i++){
TVector3 hit_distance = clus_position - trk_points[i].referencePoint;
if(hit_distance.Mag()<minR) minR = hit_distance.Mag();
}
return minR;
}
#endif