Newer
Older
#include "DD4hep/objects/DetectorInterna.h"
#include "DDRec/MaterialManager.h"
#include <exception>
#include <memory>
#include "TGeoMatrix.h"
#include "TGeoShape.h"
#include "TRotation.h"
namespace DD4hep {
namespace DDRec {
using namespace Geometry ;
//--------------------------------------------------------
// /** Copy c'tor - copies handle */
// SurfaceMaterial::SurfaceMaterial( Geometry::Material m ) : Geometry::Material( m ) {}
// SurfaceMaterial::SurfaceMaterial( const SurfaceMaterial& sm ) : Geometry::Material( sm ) {
// // (*this).Geometry::Material::m_element = sm.Geometry::Material::m_element ;
// }
// SurfaceMaterial:: ~SurfaceMaterial() {}
//--------------------------------------------------------
SurfaceData::SurfaceData() : _type( SurfaceType() ) ,
_u( Vector3D() ) ,
_v( Vector3D() ) ,
_n( Vector3D() ) ,
_o( Vector3D() ) ,
_th_i( 0. ),
_th_o( 0. ),
_innerMat( MaterialData() ),
_outerMat( MaterialData() ) {
}
SurfaceData::SurfaceData( SurfaceType type , double thickness_inner ,double thickness_outer,
Vector3D u ,Vector3D v ,Vector3D n ,Vector3D o ) : _type(type ) ,
_u( u ) ,
_v( v ) ,
_n( n ) ,
_o( o ),
_th_i( thickness_inner ),
_th_o( thickness_outer ),
_innerMat( MaterialData() ),
_outerMat( MaterialData() ) {
VolSurface::VolSurface( Volume vol, SurfaceType type, double thickness_inner ,double thickness_outer,
Vector3D u ,Vector3D v ,Vector3D n ,Vector3D o ) :
Geometry::Handle< SurfaceData >( new SurfaceData( type, thickness_inner ,thickness_outer, u,v,n,o) ) ,
_vol( vol ) {
}
/** Distance to surface */
double VolPlane::distance(const Vector3D& point ) const {
return ( point - origin() ) * normal() ;
}
/// Checks if the given point lies within the surface
bool VolPlane::insideBounds(const Vector3D& point, double epsilon) const {
bool inShape = volume()->GetShape()->Contains( point.const_array() ) ;
std::cout << " ** Surface::insideBound( " << point << " ) - distance = " << dist
<< " origin = " << origin() << " normal = " << normal()
<< " p * n = " << point * normal()
<< " isInShape : " << inShape << std::endl ;
return dist < epsilon && inShape ;
#else
//fixme: older versions of ROOT (~<5.34.10 ) take a non const pointer as argument - therefore use a const cast here for the time being ...
return ( std::abs ( distance( point ) ) < epsilon ) && volume()->GetShape()->Contains( const_cast<double*> (point.const_array() ) ) ;
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
//=============================================================================================================
Vector3D VolCylinder::u( const Vector3D& point ) const {
// for now we just have u const as (0,0,1)
point.x() ; return VolSurface::u() ;
}
Vector3D VolCylinder::v(const Vector3D& point ) const {
Vector3D n( 1. , point.phi() , 0. , Vector3D::cylindrical ) ;
// std::cout << " u : " << u()
// << " n : " << n
// << " u X n :" << u().cross( n ) ;
return u().cross( n ) ;
}
Vector3D VolCylinder::normal(const Vector3D& point ) const {
// normal is just given by phi of the point
return Vector3D( 1. , point.phi() , 0. , Vector3D::cylindrical ) ;
}
VolCylinder::VolCylinder( Geometry::Volume vol, SurfaceType type, double thickness_inner ,double thickness_outer, Vector3D o ) :
VolSurface( vol, type, thickness_inner, thickness_outer, Vector3D() , Vector3D() , Vector3D() , o ) {
Vector3D u( 0., 0., 1. ) ;
Vector3D o_rphi( o.x() , o.y() , 0. ) ;
Vector3D n = o_rphi.unit() ;
Vector3D v = u.cross( n ) ;
setU( u ) ;
setV( v ) ;
setNormal( n ) ;
object<SurfaceData>()._type.setProperty( SurfaceType::Plane , false ) ;
object<SurfaceData>()._type.setProperty( SurfaceType::Cylinder , true ) ;
object<SurfaceData>()._type.checkParallelToZ( *this ) ;
object<SurfaceData>()._type.checkOrthogonalToZ( *this ) ;
}
/** Distance to surface */
double VolCylinder::distance(const Vector3D& point ) const {
return point.rho() - origin().rho() ;
}
/// Checks if the given point lies within the surface
bool VolCylinder::insideBounds(const Vector3D& point, double epsilon) const {
double distR = std::abs( distance( point ) ) ;
bool inShapeT = volume()->GetShape()->Contains( const_cast<double*> ( point.const_array() ) ) ;
std::cout << " ** Surface::insideBound( " << point << " ) - distance = " << distR
<< " origin = " << origin()
<< " isInShape : " << inShapeT << std::endl ;
return ( std::abs ( distance( point ) ) < epsilon ) && volume()->GetShape()->Contains( const_cast<double*> (point.const_array()) ) ;
//================================================================================================================
VolSurfaceList* volSurfaceList( DetElement& det ) {
VolSurfaceList* list = 0 ;
try {
list = det.extension< VolSurfaceList >() ;
} catch( std::runtime_error e){
list = det.addExtension<VolSurfaceList >( new VolSurfaceList ) ;
}
return list ;
}
//======================================================================================================================
bool findVolume( PlacedVolume pv, Volume theVol, std::list< PlacedVolume >& volList ) {
volList.push_back( pv ) ;
// unsigned count = volList.size() ;
// for(unsigned i=0 ; i < count ; ++i) {
// std::cout << " searching for volume: " << theVol.name() << " " << std::hex << theVol.ptr() << " <-> pv.volume : " << pv.name() << " " << pv.volume().ptr()
// << " pv.volume().ptr() == theVol.ptr() " << (pv.volume().ptr() == theVol.ptr() )
// << std::endl ;
if( pv.volume().ptr() == theVol.ptr() ) {
return true ;
} else {
//--------------------------------
const TGeoNode* node = pv.ptr();
if ( !node ) {
// std::cout << " *** findVolume: Invalid placement: - node pointer Null for volume: " << pv.name() << std::endl ;
throw std::runtime_error("*** findVolume: Invalid placement: - node pointer Null ! " + std::string( pv.name() ) );
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// std::cout << " ndau = " << node->GetNdaughters() << std::endl ;
for (Int_t idau = 0, ndau = node->GetNdaughters(); idau < ndau; ++idau) {
TGeoNode* daughter = node->GetDaughter(idau);
PlacedVolume placement( daughter );
if ( !placement.data() ) {
throw std::runtime_error("*** findVolume: Invalid not instrumented placement:"+std::string(daughter->GetName())
+" [Internal error -- bad detector constructor]");
}
PlacedVolume pv_dau = Ref_t(daughter); // why use a Ref_t here ???
if( findVolume( pv_dau , theVol , volList ) ) {
// std::cout << " ----- found in daughter volume !!! " << std::hex << pv_dau.volume().ptr() << std::endl ;
return true ;
}
}
// ------- not found:
volList.pop_back() ;
return false ;
//--------------------------------
}
}
Surface::Surface( Geometry::DetElement det, VolSurface volSurf ) : _det( det) , _volSurf( volSurf ),
_wtM(0) , _id( 0) , _type( _volSurf.type() ) {
initialize() ;
}
const IMaterial& Surface::innerMaterial() const {
// std::cout << " **** Surface::innerMaterial() " << mat << std::endl ;
MaterialManager matMgr ;
Vector3D p = _o - innerThickness() * _n ;
const MaterialVec& materials = matMgr.materialsBetween( _o , p ) ;
// std::cout << " ####### found materials between points : " << _o << " and " << p << " : " ;
// for( unsigned i=0,n=materials.size();i<n;++i){
// std::cout << materials[i].first.name() << "[" << materials[i].second << "], " ;
// }
// std::cout << std::endl ;
// const MaterialData& matAvg = matMgr.createAveragedMaterial( materials ) ;
// mat = matAvg ;
// std::cout << " **** Surface::innerMaterial() - assigning averaged material to surface : " << mat << std::endl ;
mat = ( materials.size() > 1 ? matMgr.createAveragedMaterial( materials ) : materials[0].first ) ;
return mat ;
}
const IMaterial& Surface::outerMaterial() const {
MaterialManager matMgr ;
Vector3D p = _o + outerThickness() * _n ;
const MaterialVec& materials = matMgr.materialsBetween( _o , p ) ;
mat = ( materials.size() > 1 ? matMgr.createAveragedMaterial( materials ) : materials[0].first ) ;
return mat ;
}
double Surface::distance(const Vector3D& point ) const {
double pa[3] ;
_wtM->MasterToLocal( point , pa ) ;
Vector3D localPoint( pa ) ;
return ( _volSurf.type().isPlane() ? VolPlane(_volSurf).distance( localPoint ) : VolCylinder(_volSurf).distance( localPoint ) ) ;
}
bool Surface::insideBounds(const Vector3D& point, double epsilon) const {
double pa[3] ;
_wtM->MasterToLocal( point , pa ) ;
Vector3D localPoint( pa ) ;
return ( _volSurf.type().isPlane() ? VolPlane(_volSurf).insideBounds( localPoint, epsilon ) : VolCylinder(_volSurf).insideBounds( localPoint , epsilon) ) ;
void Surface::initialize() {
// first we need to find the right volume for the local surface in the DetElement's volumes
std::list< PlacedVolume > pVList ;
PlacedVolume pv = _det.placement() ;
Volume theVol = _volSurf.volume() ;
if( ! findVolume( pv, theVol , pVList ) ){
throw std::runtime_error( " ***** ERROR: No Volume found for DetElement with surface " ) ;
}
// std::cout << " **** Surface::initialize() # placements for surface = " << pVList.size()
// << " worldTransform : "
// << std::endl ;
//=========== compute and cache world transform for surface ==========
const TGeoHMatrix& wm = _det.worldTransformation() ;
for( std::list<PlacedVolume>::iterator it= pVList.begin(), n = pVList.end() ; it != n ; ++it ){
PlacedVolume pv = *it ;
TGeoMatrix* m = pv->GetMatrix();
std::cout << " +++ matrix for placed volume : " << std::endl ;
m->Print() ;
}
#endif
// need to get the inverse transformation ( see Detector.cpp )
std::auto_ptr<TGeoHMatrix> wtI( new TGeoHMatrix( wm.Inverse() ) ) ;
//---- if the volSurface is not in the DetElement's volume, we need to mutliply the path to the volume to the
// DetElements world transform
for( std::list<PlacedVolume>::iterator it = ++( pVList.begin() ) , n = pVList.end() ; it != n ; ++it ){
PlacedVolume pv = *it ;
TGeoMatrix* m = pv->GetMatrix();
// std::cout << " +++ matrix for placed volume : " << std::endl ;
// m->Print() ;
// std::cout << " +++ new world transform matrix : " << std::endl ;
#if 0 //fixme: which convention to use here - the correct should be wtI, however it is the inverse of what is stored in DetElement ???
std::auto_ptr<TGeoHMatrix> wt( new TGeoHMatrix( wtI->Inverse() ) ) ;
wt->Print() ;
// cache the world transform for the surface
_wtM = wt.release() ;
#else
// wtI->Print() ;
// cache the world transform for the surface
_wtM = wtI.release() ;
#endif
// ============ now fill the global surface vectors ==========================
double ua[3], va[3], na[3], oa[3] ;
_wtM->LocalToMasterVect( _volSurf.u() , ua ) ;
_wtM->LocalToMasterVect( _volSurf.v() , va ) ;
_wtM->LocalToMasterVect( _volSurf.normal() , na ) ;
_wtM->LocalToMaster ( _volSurf.origin() , oa ) ;
_u.fill( ua ) ;
_v.fill( va ) ;
_n.fill( na ) ;
_o.fill( oa ) ;
// std::cout << " --- local and global surface vectors : ------- " << std::endl
// << " u : " << _volSurf.u() << " - " << _u << std::endl
// << " v : " << _volSurf.v() << " - " << _v << std::endl
// << " n : " << _volSurf.normal() << " - " << _n << std::endl
// << " o : " << _volSurf.origin() << " - " << _o << std::endl ;
// =========== check parallel and orthogonal to Z ===================
_type.checkOrthogonalToZ( *this ) ;
//======== set the unique surface ID from the DetElement ( and placements below ? )
// just use the DetElement ID for now ...
_id = _det.volumeID() ;
// typedef PlacedVolume::VolIDs IDV ;
// DetElement d = _det ;
// while( d.isValid() && d.parent().isValid() ){
// PlacedVolume pv = d.placement() ;
// if( pv.isValid() ){
// const IDV& idV = pv.volIDs() ;
// std::cout << " VolIDs : " << d.name() << std::endl ;
// for( unsigned i=0, n=idV.size() ; i<n ; ++i){
// std::cout << " " << idV[i].first << " - " << idV[i].second << std::endl ;
// }
// }
// d = d.parent() ;
// }
}
//===================================================================================================================
std::vector< std::pair<Vector3D, Vector3D> > Surface::getLines(unsigned nMax) {
const static double epsilon = 1e-6 ;
std::vector< std::pair<Vector3D, Vector3D> > lines ;
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// get local and global surface vectors
const DDSurfaces::Vector3D& lu = _volSurf.u() ;
const DDSurfaces::Vector3D& lv = _volSurf.v() ;
const DDSurfaces::Vector3D& ln = _volSurf.normal() ;
const DDSurfaces::Vector3D& lo = _volSurf.origin() ;
Volume vol = volume() ;
const TGeoShape* shape = vol->GetShape() ;
if( type().isPlane() ) {
if( shape->IsA() == TGeoBBox::Class() ) {
TGeoBBox* box = ( TGeoBBox* ) shape ;
DDSurfaces::Vector3D boxDim( box->GetDX() , box->GetDY() , box->GetDZ() ) ;
bool isYZ = std::fabs( ln.x() - 1.0 ) < epsilon ; // normal parallel to x
bool isXZ = std::fabs( ln.y() - 1.0 ) < epsilon ; // normal parallel to y
bool isXY = std::fabs( ln.z() - 1.0 ) < epsilon ; // normal parallel to z
if( isYZ || isXZ || isXY ) { // plane is parallel to one of the box' sides -> need 4 vertices from box dimensions
// if isYZ :
unsigned uidx = 1 ;
unsigned vidx = 2 ;
DDSurfaces::Vector3D ubl( 0., 1., 0. ) ;
DDSurfaces::Vector3D vbl( 0., 0., 1. ) ;
if( isXZ ) {
ubl.fill( 1., 0., 0. ) ;
vbl.fill( 0., 0., 1. ) ;
uidx = 0 ;
vidx = 2 ;
} else if( isXY ) {
ubl.fill( 1., 0., 0. ) ;
vbl.fill( 0., 1., 0. ) ;
uidx = 0 ;
vidx = 1 ;
}
DDSurfaces::Vector3D ub ;
DDSurfaces::Vector3D vb ;
_wtM->LocalToMasterVect( ubl , ub.array() ) ;
_wtM->LocalToMasterVect( vbl , vb.array() ) ;
lines.push_back( std::make_pair( _o + boxDim[ uidx ] * ub + boxDim[ vidx ] * vb , _o - boxDim[ uidx ] * ub + boxDim[ vidx ] * vb ) ) ;
lines.push_back( std::make_pair( _o - boxDim[ uidx ] * ub + boxDim[ vidx ] * vb , _o - boxDim[ uidx ] * ub - boxDim[ vidx ] * vb ) ) ;
lines.push_back( std::make_pair( _o - boxDim[ uidx ] * ub - boxDim[ vidx ] * vb , _o + boxDim[ uidx ] * ub - boxDim[ vidx ] * vb ) ) ;
lines.push_back( std::make_pair( _o + boxDim[ uidx ] * ub - boxDim[ vidx ] * vb , _o + boxDim[ uidx ] * ub + boxDim[ vidx ] * vb ) ) ;
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
} else if( shape->IsA() == TGeoConeSeg::Class() ) {
TGeoCone* cone = ( TGeoCone* ) shape ;
// can only deal with special case of z-disk and origin in center of cone
if( type().isZDisk() && lo.rho() < epsilon ) {
double zhalf = cone->GetDZ() ;
double rmax1 = cone->GetRmax1() ;
double rmax2 = cone->GetRmax2() ;
double rmin1 = cone->GetRmin1() ;
double rmin2 = cone->GetRmin2() ;
// two circles around origin
// get radii at position of plane
double r0 = rmin1 + ( rmin2 - rmin1 ) / ( 2. * zhalf ) * ( zhalf + lo.z() ) ;
double r1 = rmax1 + ( rmax2 - rmax1 ) / ( 2. * zhalf ) * ( zhalf + lo.z() ) ;
unsigned n = nMax / 4 ;
double dPhi = 2.* ROOT::Math::Pi() / double( n ) ;
for( unsigned i = 0 ; i < n ; ++i ) {
Vector3D rv00( r0*sin( i *dPhi ) , r0*cos( i *dPhi ) , 0. ) ;
Vector3D rv01( r0*sin( (i+1)*dPhi ) , r0*cos( (i+1)*dPhi ) , 0. ) ;
Vector3D rv10( r1*sin( i *dPhi ) , r1*cos( i *dPhi ) , 0. ) ;
Vector3D rv11( r1*sin( (i+1)*dPhi ) , r1*cos( (i+1)*dPhi ) , 0. ) ;
Vector3D pl0 = lo + rv00 ;
Vector3D pl1 = lo + rv01 ;
Vector3D pl2 = lo + rv10 ;
Vector3D pl3 = lo + rv11 ;
Vector3D pg0,pg1,pg2,pg3 ;
_wtM->LocalToMaster( pl0, pg0.array() ) ;
_wtM->LocalToMaster( pl1, pg1.array() ) ;
_wtM->LocalToMaster( pl2, pg2.array() ) ;
_wtM->LocalToMaster( pl3, pg3.array() ) ;
lines.push_back( std::make_pair( pg0, pg1 ) ) ;
lines.push_back( std::make_pair( pg2, pg3 ) ) ;
}
//add some vertical and horizontal lines so that the disc is seen in the rho-z projection
n = 4 ; dPhi = 2.* ROOT::Math::Pi() / double( n ) ;
for( unsigned i = 0 ; i < n ; ++i ) {
Vector3D rv0( r0*sin( i * dPhi ) , r0*cos( i * dPhi ) , 0. ) ;
Vector3D rv1( r1*sin( i * dPhi ) , r1*cos( i * dPhi ) , 0. ) ;
Vector3D pl0 = lo + rv0 ;
Vector3D pl1 = lo + rv1 ;
Vector3D pg0,pg1 ;
_wtM->LocalToMaster( pl0, pg0.array() ) ;
_wtM->LocalToMaster( pl1, pg1.array() ) ;
lines.push_back( std::make_pair( pg0, pg1 ) ) ;
}
}
return lines ;
}
// ===== default for arbitrary planes in arbitrary shapes =================
// We create nMax vertices by rotating the local u vector around the normal
// and checking the distance to the volume boundary in that direction.
// This is brute force and not very smart, as many points are created on straight
// lines and the edges are still rounded.
// The alterative would be to compute the true intersections a plane and the most
// common shapes - at least for boxes that should be not too hard. To be done...
lines.reserve( nMax ) ;
double dAlpha = 2.* ROOT::Math::Pi() / double( nMax ) ;
TVector3 normal( ln.x() , ln.y() , ln.z() ) ;
DDSurfaces::Vector3D first, previous ;
for(unsigned i=0 ; i< nMax ; ++i ){
double alpha = double(i) * dAlpha ;
TVector3 vec( lu.x() , lu.y() , lu.z() ) ;
TRotation rot ;
rot.Rotate( alpha , normal );
TVector3 vecR = rot * vec ;
DDSurfaces::Vector3D luRot ;
luRot.fill( vecR ) ;
double dist = shape->DistFromInside( const_cast<double*> (lo.const_array()) , const_cast<double*> (luRot.const_array()) , 3, 0.1 ) ;
// local point at volume boundary
DDSurfaces::Vector3D lp = lo + dist * luRot ;
DDSurfaces::Vector3D gp ;
_wtM->LocalToMaster( lp , gp.array() ) ;
// std::cout << " **** normal:" << ln << " lu:" << lu << " alpha:" << alpha << " luRot:" << luRot << " lp :" << lp << " gp:" << gp << " dist : " << dist
// << " is point " << gp << " inside : " << shape->Contains( gp.const_array() )
// << " dist from outside for lo,lu " << shape->DistFromOutside( lo.const_array() , lu.const_array() , 3 )
// << " dist from inside for lo,ln " << shape->DistFromInside( lo.const_array() , ln.const_array() , 3 )
// << std::endl;
// shape->Dump() ;
lines.push_back( std::make_pair( previous, gp ) ) ;
else
first = gp ;
previous = gp ;
lines.push_back( std::make_pair( previous, first ) ) ;
// if( shape->IsA() == TGeoTube::Class() ) {
if( shape->IsA() == TGeoConeSeg::Class() ) {
lines.reserve( nMax ) ;
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
TGeoTube* tube = ( TGeoTube* ) shape ;
double zHalf = tube->GetDZ() ;
Vector3D zv( 0. , 0. , zHalf ) ;
double r = lo.rho() ;
unsigned n = nMax / 4 ;
double dPhi = 2.* ROOT::Math::Pi() / double( n ) ;
for( unsigned i = 0 ; i < n ; ++i ) {
Vector3D rv0( r*sin( i *dPhi ) , r*cos( i *dPhi ) , 0. ) ;
Vector3D rv1( r*sin( (i+1)*dPhi ) , r*cos( (i+1)*dPhi ) , 0. ) ;
// 4 points on local cylinder
Vector3D pl0 = zv + rv0 ;
Vector3D pl1 = zv + rv1 ;
Vector3D pl2 = -zv + rv1 ;
Vector3D pl3 = -zv + rv0 ;
Vector3D pg0,pg1,pg2,pg3 ;
_wtM->LocalToMaster( pl0, pg0.array() ) ;
_wtM->LocalToMaster( pl1, pg1.array() ) ;
_wtM->LocalToMaster( pl2, pg2.array() ) ;
_wtM->LocalToMaster( pl3, pg3.array() ) ;
lines.push_back( std::make_pair( pg0, pg1 ) ) ;
lines.push_back( std::make_pair( pg1, pg2 ) ) ;
lines.push_back( std::make_pair( pg2, pg3 ) ) ;
lines.push_back( std::make_pair( pg3, pg0 ) ) ;
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
//================================================================================================================
Vector3D CylinderSurface::u( const Vector3D& point ) const {
Vector3D lp , u ;
_wtM->MasterToLocal( point , lp.array() ) ;
const DDSurfaces::Vector3D& lu = _volSurf.u( lp ) ;
_wtM->LocalToMasterVect( lu , u.array() ) ;
return u ;
}
Vector3D CylinderSurface::v(const Vector3D& point ) const {
Vector3D lp , v ;
_wtM->MasterToLocal( point , lp.array() ) ;
const DDSurfaces::Vector3D& lv = _volSurf.v( lp ) ;
_wtM->LocalToMasterVect( lv , v.array() ) ;
return v ;
}
Vector3D CylinderSurface::normal(const Vector3D& point ) const {
Vector3D lp , n ;
_wtM->MasterToLocal( point , lp.array() ) ;
const DDSurfaces::Vector3D& ln = _volSurf.normal( lp ) ;
_wtM->LocalToMasterVect( ln , n.array() ) ;
return n ;
}
//================================================================================================================