Newer
Older
// $Id: Geant4Field.cpp 888 2013-11-14 15:54:56Z markus.frank@cern.ch $
//====================================================================
// AIDA Detector description implementation for LCD
//--------------------------------------------------------------------
//
// Author : M.Frank
//
//====================================================================
// Framework include files
//#include "DD4hep/Printout.h"
#include "DD4hep/Primitives.h"
#include "DD4hep/InstanceCount.h"
#include "DDG4/Geant4StepHandler.h"
#include "DDG4/Geant4TrackHandler.h"
#include "DDG4/Geant4EventAction.h"
#include "DDG4/Geant4SensDetAction.h"
#include "DDG4/Geant4TrackingAction.h"
#include "DDG4/Geant4SteppingAction.h"
#include "DDG4/Geant4ParticleHandler.h"
#include "G4Track.hh"
#include "G4Event.hh"
#include "G4TrackStatus.hh"
#include "G4PrimaryVertex.hh"
#include "G4PrimaryParticle.hh"
#include "G4TrackingManager.hh"
#include "G4ParticleDefinition.hh"
#include "CLHEP/Units/SystemOfUnits.h"
#include <set>
#include <stdexcept>
#include <algorithm>
using namespace std;
using namespace DD4hep;
using namespace DD4hep::Simulation;
typedef ReferenceBitMask<int> PropertyMask;
namespace {
G4PrimaryParticle* primary(int id, const G4Event& evt) {
for(int i=0, ni=evt.GetNumberOfPrimaryVertex(); i<ni; ++i) {
G4PrimaryVertex* v = evt.GetPrimaryVertex(i);
for(int j=0, nj=v->GetNumberOfParticle(); j<nj; ++j) {
G4PrimaryParticle* p = v->GetPrimary(j);
if ( id == p->GetTrackID() ) {
return p;
}
}
}
return 0;
Geant4ParticleHandler::Geant4ParticleHandler(Geant4Context* context, const string& nam)
: Geant4GeneratorAction(context,nam), Geant4MonteCarloTruth(), m_userHandler(0), m_primaryMap(0)
//generatorAction().adopt(this);
eventAction().callAtBegin(this,&Geant4ParticleHandler::beginEvent);
eventAction().callAtEnd(this,&Geant4ParticleHandler::endEvent);
trackingAction().callAtFinal(this,&Geant4ParticleHandler::end,CallbackSequence::FRONT);
trackingAction().callUpFront(this,&Geant4ParticleHandler::begin,CallbackSequence::FRONT);
steppingAction().call(this,&Geant4ParticleHandler::step);
m_globalParticleID = 0;
declareProperty("PrintEndTracking", m_printEndTracking = false);
declareProperty("PrintStartTracking", m_printStartTracking = false);
declareProperty("KeepAllParticles", m_keepAll = false);
declareProperty("SaveProcesses", m_processNames);
declareProperty("MinimalKineticEnergy",m_kinEnergyCut = 100e0*MeV);
/// No default constructor
Geant4ParticleHandler::Geant4ParticleHandler() : Geant4GeneratorAction(0,"") {
}
/// Default destructor
Geant4ParticleHandler::~Geant4ParticleHandler() {
InstanceCount::decrement(this);
}
/// No assignment operator
Geant4ParticleHandler& Geant4ParticleHandler::operator=(const Geant4ParticleHandler&) {
return *this;
}
bool Geant4ParticleHandler::adopt(Geant4Action* action) {
if ( action ) {
if ( !m_userHandler ) {
Geant4UserParticleHandler* h = dynamic_cast<Geant4UserParticleHandler*>(action);
if ( h ) {
m_userHandler = h;
m_userHandler->addRef();
return true;
}
except("Cannot add an invalid user particle handler object [Invalid-object-type].", c_name());
}
except("Cannot add an user particle handler object [Object-exists].", c_name());
}
except("Cannot add an invalid user particle handler object [NULL-object].", c_name());
return false;
}
/// Clear particle maps
void Geant4ParticleHandler::clear() {
releaseObjects(m_particleMap)();
m_particleMap.clear();
m_equivalentTracks.clear();
}
/// Mark a Geant4 track to be kept for later MC truth analysis
void Geant4ParticleHandler::mark(const G4Track* track, int reason) {
if ( track ) {
if ( reason != 0 ) {
PropertyMask(m_currTrack.reason).set(reason);
return;
}
except("Cannot mark the G4Track if the pointer is invalid!", c_name());
}
/// Store a track produced in a step to be kept for later MC truth analysis
void Geant4ParticleHandler::mark(const G4Step* step, int reason) {
return;
}
except("Cannot mark the G4Track if the step-pointer is invalid!", c_name());
}
/// Mark a Geant4 track of the step to be kept for later MC truth analysis
void Geant4ParticleHandler::mark(const G4Step* step) {
if ( step ) {
mark(step->GetTrack());
return;
}
except("Cannot mark the G4Track if the step-pointer is invalid!", c_name());
}
/// Mark a Geant4 track of the step to be kept for later MC truth analysis
void Geant4ParticleHandler::mark(const G4Track* track) {
PropertyMask mask(m_currTrack.reason);
mask.set(G4PARTICLE_CREATED_HIT);
/// Check if the track origines from the calorimeter.
// If yes, flag it, because it is a candidate for removal.
G4LogicalVolume* vol = track->GetVolume()->GetLogicalVolume();
G4VSensitiveDetector* g4 = vol->GetSensitiveDetector();
Geant4ActionSD* sd = dynamic_cast<Geant4ActionSD*>(g4);
string typ = sd ? sd->sensitiveType() : string();
if ( typ == "calorimeter" )
mask.set(G4PARTICLE_CREATED_CALORIMETER_HIT);
else if ( typ == "tracker" )
mask.set(G4PARTICLE_CREATED_TRACKER_HIT);
else // Assume by default "tracker"
mask.set(G4PARTICLE_CREATED_TRACKER_HIT);
//Geant4ParticleHandle(&m_currTrack).dump4(outputLevel(),vol->GetName(),"hit created by particle");
}
/// Event generation action callback
void Geant4ParticleHandler::operator()(G4Event* event) {
typedef Geant4MonteCarloTruth _MC;
info("+++ Event:%d Add EVENT extension of type Geant4ParticleHandler.....",event->GetEventID());
context()->event().addExtension((_MC*)this, typeid(_MC), 0);
/// Call the user particle handler
if ( m_userHandler ) {
m_userHandler->generate(event, this);
}
void Geant4ParticleHandler::step(const G4Step* step, G4SteppingManager* mgr) {
typedef vector<const G4Track*> _Sec;
if ( (m_currTrack.reason&G4PARTICLE_ABOVE_ENERGY_THRESHOLD) ) {
//
// Tracks below the energy threshold are NOT stored.
// If these tracks produce hits or are selected due to another signature,
// this criterium will anyhow take precedence.
//
const _Sec* sec=step->GetSecondaryInCurrentStep();
if ( sec->size() > 0 ) {
PropertyMask(m_currTrack.reason).set(G4PARTICLE_HAS_SECONDARIES);
}
}
/// Update of the particle using the user handler
if ( m_userHandler ) {
m_userHandler->step(step, mgr, m_currTrack);
}
}
/// Pre-track action callback
void Geant4ParticleHandler::begin(const G4Track* track) {
Geant4TrackHandler h(track);
double kine = h.kineticEnergy();
G4ThreeVector m = h.momentum();
const G4ThreeVector& v = h.vertex();
int reason = (kine > m_kinEnergyCut) ? G4PARTICLE_ABOVE_ENERGY_THRESHOLD : 0;
G4PrimaryParticle* prim = primary(h.id(),context()->event().event());
Particle* prim_part = 0;
if ( prim ) {
Geant4PrimaryMap::Primaries::const_iterator iprim = m_primaryMap->primaryMap.find(prim);
if ( iprim == m_primaryMap->primaryMap.end() ) {
except("+++ Tracking preaction: Primary particle without generator particle!");
}
prim_part = (*iprim).second;
reason |= (G4PARTICLE_PRIMARY|G4PARTICLE_ABOVE_ENERGY_THRESHOLD);
m_particleMap[h.id()] = prim_part->addRef();
}
if ( prim_part ) {
m_currTrack.id = prim_part->id;
m_currTrack.reason = prim_part->reason|reason;
m_currTrack.status = prim_part->status;
m_currTrack.spin[0] = prim_part->spin[0];
m_currTrack.spin[1] = prim_part->spin[1];
m_currTrack.spin[2] = prim_part->spin[2];
m_currTrack.colorFlow[0] = prim_part->colorFlow[0];
m_currTrack.colorFlow[1] = prim_part->colorFlow[1];
m_currTrack.parents = prim_part->parents;
m_currTrack.daughters = prim_part->daughters;
m_currTrack.definition = prim_part->definition;
m_currTrack.pdgID = prim_part->pdgID;
m_currTrack.mass = prim_part->mass;
}
else {
m_currTrack.id = m_globalParticleID;
m_currTrack.reason = reason;
m_currTrack.status |= G4PARTICLE_SIM_CREATED;
m_currTrack.spin[0] = 0;
m_currTrack.spin[1] = 0;
m_currTrack.spin[2] = 0;
m_currTrack.colorFlow[0] = 0;
m_currTrack.colorFlow[1] = 0;
m_currTrack.parents.clear();
m_currTrack.daughters.clear();
m_currTrack.definition = h.trackDef();
m_currTrack.pdgID = h.trackDef()->GetPDGEncoding();
m_currTrack.mass = h.trackDef()->GetPDGMass();
++m_globalParticleID;
}
Markus Frank
committed
m_currTrack.steps = 0;
m_currTrack.secondaries = 0;
m_currTrack.g4Parent = h.parent();
m_currTrack.process = h.creatorProcess();
m_currTrack.time = h.globalTime();
m_currTrack.vsx = v.x();
m_currTrack.vsy = v.y();
m_currTrack.vsz = v.z();
m_currTrack.vex = 0.0;
m_currTrack.vey = 0.0;
m_currTrack.vez = 0.0;
m_currTrack.psx = m.x();
m_currTrack.psy = m.y();
m_currTrack.psz = m.z();
m_currTrack.pex = 0.0;
m_currTrack.pey = 0.0;
m_currTrack.pez = 0.0;
// If the creator process of the track is in the list of process products to be kept, set the proper flag
if ( m_currTrack.process ) {
Processes::iterator i=find(m_processNames.begin(),m_processNames.end(),m_currTrack.process->GetProcessName());
if ( i != m_processNames.end() ) {
PropertyMask(m_currTrack.reason).set(G4PARTICLE_KEEP_PROCESS);
}
}
if ( m_keepAll ) {
PropertyMask(m_currTrack.reason).set(G4PARTICLE_KEEP_ALWAYS);
}
/// Initial update of the particle using the user handler
if ( m_userHandler ) {
m_userHandler->begin(track, m_currTrack);
}
}
/// Post-track action callback
void Geant4ParticleHandler::end(const G4Track* track) {
Geant4TrackHandler h(track);
Geant4ParticleHandle ph(&m_currTrack);
int g4_id = h.id();
int track_reason = m_currTrack.reason;
PropertyMask mask(m_currTrack.reason);
// Update vertex end point and final momentum
G4ThreeVector m = track->GetMomentum();
const G4ThreeVector& p = track->GetPosition();
ph->pex = m.x();
ph->pey = m.y();
ph->pez = m.z();
ph->vex = p.x();
ph->vey = p.y();
ph->vez = p.z();
/// Final update of the particle using the user handler
if ( m_userHandler ) {
m_userHandler->end(track, m_currTrack);
}
// These are candate tracks with a probability to be stored due to their properties:
// - primary particle
// - hits created
// - secondaries
// - above energy threshold
// - to be kept due to creator process
//
m_equivalentTracks[g4_id] = g4_id;
ParticleMap::iterator ip = m_particleMap.find(g4_id);
if ( mask.isSet(G4PARTICLE_PRIMARY) ) {
ph.dump2(outputLevel()-1,name(),"Add Primary",h.id(),ip!=m_particleMap.end());
}
// Create a new MC particle from the current track information saved in the pre-tracking action
Particle* part = 0;
if ( ip==m_particleMap.end() ) part = m_particleMap[g4_id] = new Particle();
else part = (*ip).second;
part->get_data(m_currTrack);
}
else {
// These are tracks without any special properties.
//
// We will not store them on the record, but have to memorise the
// track identifier in order to restore the history for the created hits.
int pid = m_currTrack.g4Parent;
m_equivalentTracks[g4_id] = pid;
// Need to find the last stored particle and OR this particle's mask
// with the mask of the last stored particle
TrackEquivalents::const_iterator iequiv, iend = m_equivalentTracks.end();
ParticleMap::iterator ip;
for(ip=m_particleMap.find(pid); ip == m_particleMap.end(); ip=m_particleMap.find(pid)) {
if ((iequiv=m_equivalentTracks.find(pid)) == iend) break; // ERROR
pid = (*iequiv).second;
}
if ( ip != m_particleMap.end() )
(*ip).second->reason |= track_reason;
else
ph.dump3(outputLevel()+3,name(),"FATAL: No real particle parent present");
/// Pre-event action callback
void Geant4ParticleHandler::beginEvent(const G4Event* event) {
Geant4PrimaryInteraction* interaction = context()->event().extension<Geant4PrimaryInteraction>();
info("+++ Event %d Begin event action. Access event related information.",event->GetEventID());
m_primaryMap = context()->event().extension<Geant4PrimaryMap>();
m_globalParticleID = interaction->nextPID();
m_particleMap.clear();
m_equivalentTracks.clear();
/// Call the user particle handler
if ( m_userHandler ) {
m_userHandler->begin(event);
}
/// Debugging: Dump Geant4 particle map
void Geant4ParticleHandler::dumpMap(const char* tag) const {
for(ParticleMap::const_iterator iend=m_particleMap.end(), i=m_particleMap.begin(); i!=iend; ++i) {
Geant4ParticleHandle((*i).second).dump4(INFO,name(),tag);
}
void Geant4ParticleHandler::endEvent(const G4Event* event) {
int level = outputLevel();
if ( level <= VERBOSE ) dumpMap("Particle");
print("+++ Iteration:%d Tracks:%d Equivalents:%d",++count,m_particleMap.size(),m_equivalentTracks.size());
} while( recombineParents() > 0 );
if ( level <= VERBOSE ) dumpMap("Recombined");
// Rebase the simulated tracks, so that they fit to the generator particles
rebaseSimulatedTracks(0);
if ( level <= DEBUG ) dumpMap("Rebased");
// Consistency check....
checkConsistency();
/// Call the user particle handler
if ( m_userHandler ) {
m_userHandler->end(event);
}
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
// Now export the data to the final record.
Geant4ParticleMap* part_map = context()->event().extension<Geant4ParticleMap>();
part_map->adopt(m_particleMap, m_equivalentTracks);
m_primaryMap = 0;
clear();
}
/// Rebase the simulated tracks, so that they fit to the generator particles
void Geant4ParticleHandler::rebaseSimulatedTracks(int ) {
/// No we have to update the map of equivalent tracks and assign the 'equivalentTrack' entry
TrackEquivalents equivalents, orgParticles;
ParticleMap finalParticles;
ParticleMap::const_iterator ipar, iend, i;
int count;
Geant4PrimaryInteraction* interaction = context()->event().extension<Geant4PrimaryInteraction>();
ParticleMap& pm = interaction->particles;
// (1.0) Copy the pre-defined particle mapping for the simulated tracks
// It is assumed the mapping is ZERO based without holes.
for(count = 0, iend=pm.end(), i=pm.begin(); i!=iend; ++i) {
Particle* p = (*i).second;
orgParticles[p->id] = p->id;
finalParticles[p->id] = p;
if ( p->id > count ) count = p->id;
if ( (p->reason&G4PARTICLE_PRIMARY) != G4PARTICLE_PRIMARY ) {
p->addRef();
}
}
// (1.1) Define the new particle mapping for the simulated tracks
for(++count, iend=m_particleMap.end(), i=m_particleMap.begin(); i!=iend; ++i) {
Particle* p = (*i).second;
if ( (p->reason&G4PARTICLE_PRIMARY) != G4PARTICLE_PRIMARY ) {
//if ( orgParticles.find(p->id) == orgParticles.end() ) {
orgParticles[p->id] = count;
finalParticles[count] = p;
p->id = count;
++count;
}
}
// (2) Re-evaluate the corresponding geant4 track equivalents using the new mapping
for(TrackEquivalents::iterator i=m_equivalentTracks.begin(),iend=m_equivalentTracks.end(); i!=iend; ++i) {
int g4_equiv = (*i).first;
ParticleMap::const_iterator ipar;
while( (ipar=m_particleMap.find(g4_equiv)) == m_particleMap.end() ) {
TrackEquivalents::const_iterator iequiv = m_equivalentTracks.find(g4_equiv);
if ( iequiv == iend ) {
break; // ERROR !! Will be handled by printout below because ipar==end()
g4_equiv = (*iequiv).second;
}
if ( ipar != m_particleMap.end() ) {
equivalents[(*i).first] = (*ipar).second->id; // requires (1) !
Particle* p = (*ipar).second;
const G4ParticleDefinition* def = p->definition;
int pdg = int(fabs(def->GetPDGEncoding())+0.1);
if ( pdg<36 && !(pdg > 10 && pdg < 17) && pdg != 22 ) {
error("+++ ERROR: Geant4 particle for track:%d last known is:%d -- is gluon or quark!",(*i).second,g4_equiv);
}
pdg = int(fabs(p->pdgID)+0.1);
if ( pdg<36 && !(pdg > 10 && pdg < 17) && pdg != 22 ) {
error("+++ ERROR(2): Geant4 particle for track:%d last known is:%d -- is gluon or quark!",(*i).second,g4_equiv);
}
error("+++ No Equivalent particle for track:%d last known is:%d",(*i).second,g4_equiv);
// (3) Compute the particle's parents and daughters.
// Replace the original Geant4 track with the
// equivalent particle still present in the record.
for(ParticleMap::const_iterator ipar, iend=m_particleMap.end(), i=m_particleMap.begin(); i!=iend; ++i) {
Particle* p = (*i).second;
if ( p->g4Parent > 0 ) {
int equiv_id = equivalents[p->g4Parent];
if ( (ipar=finalParticles.find(equiv_id)) != finalParticles.end() ) {
Particle* q = (*ipar).second;
q->daughters.insert(p->id);
p->parents.insert(q->id);
}
else {
error("+++ Inconsistency in particle record: Geant4 parent %d "
"of particle %d (equiv:%d) not in record!",
p->g4Parent,p->id,equiv_id);
}
}
}
m_equivalentTracks = equivalents;
m_particleMap = finalParticles;
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/// Default callback to be answered if the particle should be kept if NO user handler is installed
bool Geant4ParticleHandler::defaultKeepParticle(Particle& particle) {
PropertyMask mask(particle.reason);
bool secondaries = mask.isSet(G4PARTICLE_HAS_SECONDARIES);
bool tracker_track = mask.isSet(G4PARTICLE_CREATED_TRACKER_HIT);
bool calo_track = mask.isSet(G4PARTICLE_CREATED_CALORIMETER_HIT);
bool hits_produced = mask.isSet(G4PARTICLE_CREATED_HIT);
bool low_energy = !mask.isSet(G4PARTICLE_ABOVE_ENERGY_THRESHOLD);
/// Remove this track if it has not created a hit and the energy is below threshold
if ( mask.isNull() || (secondaries && low_energy && !hits_produced) ) {
return true;
}
/// Remove this track if the energy is below threshold. Reassign hits to parent.
else if ( !hits_produced && low_energy ) {
return true;
}
/// Remove this track if the origine is in the calorimeter. Reassign hits to parent.
else if ( !tracker_track && calo_track && low_energy ) {
return true;
}
else {
//printout(INFO,name(),"+++ Track: %d should be kept for no obvious reason....",id);
}
return false;
}
/// Clean the monte carlo record. Remove all unwanted stuff.
/// This is the core of the object executed at the end of each event action.
int Geant4ParticleHandler::recombineParents() {
set<int> remove;
/// Need to start from BACK, to clean first the latest produced stuff.
for(ParticleMap::reverse_iterator i=m_particleMap.rbegin(); i!=m_particleMap.rend(); ++i) {
Particle* p = (*i).second;
PropertyMask mask(p->reason);
bool remove_me = false;
// Allow the user to force the particle handling either by
// or the reason mask with G4PARTICLE_KEEP_USER or
// to set the reason mask to NULL in order to drop it.
//
// If the mask entry is set to G4PARTICLE_FORCE_KILL
// or is set to NULL, the particle is ALWAYS removed
//
// Note: This may override all other decisions!
remove_me = m_userHandler ? m_userHandler->keepParticle(*p) : defaultKeepParticle(*p);
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
// Now look at the property mask of the particle
if ( mask.isNull() || mask.isSet(G4PARTICLE_FORCE_KILL) ) {
remove_me = true;
}
else if ( mask.isSet(G4PARTICLE_KEEP_USER) ) {
/// If user decides it must be kept, it MUST be kept!
mask.set(G4PARTICLE_KEEP_USER);
continue;
}
else if ( mask.isSet(G4PARTICLE_PRIMARY) ) {
/// Primary particles MUST be kept!
continue;
}
else if ( mask.isSet(G4PARTICLE_KEEP_ALWAYS) ) {
continue;
}
else if ( mask.isSet(G4PARTICLE_KEEP_PARENT) ) {
//continue;
}
else if ( mask.isSet(G4PARTICLE_KEEP_PROCESS) ) {
ParticleMap::iterator ip = m_particleMap.find(p->g4Parent);
if ( ip != m_particleMap.end() ) {
Particle* parent_part = (*ip).second;
PropertyMask parent_mask(parent_part->reason);
if ( parent_mask.isSet(G4PARTICLE_ABOVE_ENERGY_THRESHOLD) ) {
parent_mask.set(G4PARTICLE_KEEP_PARENT);
continue;
// Low energy stuff. Remove it. Reassign to parent.
//remove_me = true;
}
/// Remove this track from the list and also do the cleanup in the parent's children list
if ( remove_me ) {
int g4_id = (*i).first;
ParticleMap::iterator ip = m_particleMap.find(p->g4Parent);
remove.insert(g4_id);
m_equivalentTracks[g4_id] = p->g4Parent;
if ( ip != m_particleMap.end() ) {
Particle* parent_part = (*ip).second;
PropertyMask(parent_part->reason).set(mask.value());
parent_part->steps += p->steps;
parent_part->secondaries += p->secondaries;
/// Update of the particle using the user handler
if ( m_userHandler ) {
m_userHandler->combine(*p, *parent_part);
}
}
}
}
for(set<int>::const_iterator r=remove.begin(); r!=remove.end();++r) {
ParticleMap::iterator ir = m_particleMap.find(*r);
if ( ir != m_particleMap.end() ) {
(*ir).second->release();
m_particleMap.erase(ir);
}
}
return int(remove.size());
/// Check the record consistency
void Geant4ParticleHandler::checkConsistency() const {
int num_errors = 0;
/// First check the consistency of the particle map itself
for(ParticleMap::const_iterator j, i=m_particleMap.begin(); i!=m_particleMap.end(); ++i) {
Particle* p = (*i).second;
PropertyMask mask(p->reason);
PropertyMask status(p->status);
set<int>& daughters = p->daughters;
// For all particles, the set of daughters must be contained in the record.
for(set<int>::const_iterator id=daughters.begin(); id!=daughters.end(); ++id) {
int id_dau = *id;
if ( (j=m_particleMap.find(id_dau)) == m_particleMap.end() ) {
error("+++ Particle:%d Daughter %d is not in particle map!",p->id,id_dau);
// We assume that particles from the generator have consistent parents
// For all other particles except the primaries, the parent must be contained in the record.
if ( !mask.isSet(G4PARTICLE_PRIMARY) && !status.anySet(G4PARTICLE_GEN_GENERATOR) ) {
TrackEquivalents::const_iterator eq_it = m_equivalentTracks.find(p->g4Parent);
bool in_map = false, in_parent_list = false;
int parent_id = -1;
if ( eq_it != m_equivalentTracks.end() ) {
parent_id = (*eq_it).second;
in_map = (j=m_particleMap.find(parent_id)) != m_particleMap.end();
in_parent_list = p->parents.find(parent_id) != p->parents.end();
}
if ( !in_map || !in_parent_list ) {
for(set<int>::const_iterator ip=p->parents.begin(); ip!=p->parents.end();++ip)
::snprintf(parent_list+strlen(parent_list),sizeof(parent_list)-strlen(parent_list),"%d ",*ip);
error("+++ Particle:%d Parent %d (G4id:%d) In record:%s In parent list:%s [%s]",
p->id,parent_id,p->g4Parent,yes_no(in_map),yes_no(in_parent_list),parent_list);
except("+++ Consistency check failed. Found %d problems.",num_errors);