Skip to content
Snippets Groups Projects
Commit 90fd3819 authored by FU Chengdong's avatar FU Chengdong
Browse files

add SHcalRpc02_Barrel for optional sysmetry based on SHcalRpc01_Barrel

parent 0240b875
No related branches found
No related tags found
No related merge requests found
......@@ -29,6 +29,7 @@ gaudi_add_module(DetCEPCv4
src/calorimeter/SEcal05_Endcaps.cpp
src/calorimeter/SEcal05_ECRing.cpp
src/calorimeter/SHcalRpc01_Barrel.cpp
src/calorimeter/SHcalRpc02_Barrel.cpp
src/calorimeter/SHcalRpc01_Endcaps.cpp
src/calorimeter/SHcalRpc01_EndcapRing.cpp
src/calorimeter/Yoke05_Barrel.cpp
......
//====================================================================
// SHcalRpc02 - update fixed 8 staves to optinal staves, FU Chengdong
// SHcalRpc01 - Implementation from ILCSoft's Mokka version
//====================================================================
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/DD4hepUnits.h"
#include "DD4hep/DetType.h"
#include "DDSegmentation/TiledLayerGridXY.h"
#include "DDRec/Surface.h"
#include "DDRec/DetectorData.h"
#include "XML/Utilities.h"
using namespace std;
using dd4hep::Ref_t;
using dd4hep::BUILD_ENVELOPE;
using dd4hep::DetElement;
using dd4hep::Detector;
using dd4hep::SensitiveDetector;
using dd4hep::Segmentation;
using dd4hep::Readout;
using dd4hep::Material;
using dd4hep::Volume;
using dd4hep::PlacedVolume;
using dd4hep::Position;
using dd4hep::RotationZYX;
using dd4hep::RotationZ;
using dd4hep::Transform3D;
using dd4hep::Box;
using dd4hep::Tube;
using dd4hep::PolyhedraRegular;
using dd4hep::SubtractionSolid;
using dd4hep::_toString;
using dd4hep::pi;
using dd4hep::rec::LayeredCalorimeterData;
/** Construction of SHcalRpc01 detector, ported from Mokka driver SHcalRpc01.cc
*
* Mokka History:
* - first implementation from ILCSoft
* - http://cepcgit.ihep.ac.cn/cepcsoft/MokkaC
*/
static Ref_t create_detector(Detector& theDetector, xml_h element, SensitiveDetector sens) {
cout << "--------------------------" << endl;
cout << "creating SHcalRpc01_Barrel" << endl;
cout << "--------------------------" << endl;
xml_det_t x_det = element;
string name = x_det.nameStr();
int det_id = x_det.id();
DetElement det(name, det_id);
Volume envelope = dd4hep::xml::createPlacedEnvelope(theDetector, element , det ) ;
envelope.setVisAttributes(theDetector, "GrayVis");
dd4hep::xml::setDetectorTypeFlag(element, det) ;
if( theDetector.buildType() == BUILD_ENVELOPE ) return det ;
xml_comp_t x_staves = x_det.staves();
string Hcal_radiator_material = x_staves.materialStr();
Material stavesMaterial = theDetector.material(Hcal_radiator_material);
Material air = theDetector.air();
sens.setType("calorimeter");
Readout readout = sens.readout();
Segmentation seg = readout.segmentation();
dd4hep::DDSegmentation::TiledLayerGridXY* tiledSeg = dynamic_cast<dd4hep::DDSegmentation::TiledLayerGridXY*> (seg.segmentation());
assert(tiledSeg && "no TiledLayerGridXY found" );
std::vector<double> cellSizeVector = seg.segmentation()->cellDimensions(0);
double cell_sizeX = cellSizeVector[0];
double cell_sizeZ = cellSizeVector[1];
double Hcal_inner_radius = theDetector.constant<double>("Hcal_inner_radius");
double Hcal_outer_radius_set = theDetector.constant<double>("Hcal_outer_radius");
double Hcal_half_length = theDetector.constant<double>("Hcal_half_length");
int Hcal_inner_symmetry = theDetector.constant<int>("Hcal_inner_symmetry");
int Hcal_outer_symmetry = 0;
double Hcal_lateral_plate_thickness = theDetector.constant<double>("Hcal_lateral_structure_thickness");
double Hcal_modules_gap = theDetector.constant<double>("Hcal_modules_gap");
double Ecal_outer_radius = theDetector.constant<double>("Ecal_outer_radius");
int Hcal_barrel_number_modules = theDetector.constant<int>("Hcal_barrel_number_modules");
double hPrime = Ecal_outer_radius + theDetector.constant<double>("Hcal_Ecal_gap");
Hcal_inner_radius = hPrime / cos(pi/Hcal_inner_symmetry);
double Hcal_normal_dim_z = (2*Hcal_half_length - (Hcal_barrel_number_modules-1)*Hcal_modules_gap)/Hcal_barrel_number_modules;
xml_coll_t c(x_det,_U(layer));
xml_comp_t x_layer = c;
int Hcal_nlayers = x_layer.repeat();
double Hcal_radiator_thickness = 0;
double layerThickness = 0.0;
for(xml_coll_t k(x_layer,_U(slice)); k; ++k) {
xml_comp_t x_slice = k;
layerThickness += x_slice.thickness();
if(x_slice.materialStr()==Hcal_radiator_material) Hcal_radiator_thickness = x_slice.thickness();
}
cout << " inner symmetry = " << Hcal_inner_symmetry << endl;
cout << " Hcal_inner_radius = " << hPrime << endl;
cout << " cell size xy = " << cell_sizeX << " cell size z = " << cell_sizeZ << endl;
cout << " layer_thickness (from slices) = " << layerThickness << " and radiator_thickness = " << Hcal_radiator_thickness << endl;
double Hcal_chamber_thickness = layerThickness - Hcal_radiator_thickness;
int MinNumCellsInTransvPlane = theDetector.constant<int>("Hcal_MinNumCellsInTransvPlane");
double RPC_EdgeWidth = theDetector.constant<double>("Hcal_gas_edge_width");
double RPCGazInletInnerRadius = theDetector.constant<double>("Hcal_gasInlet_inner_radius");
double RPCGazInletOuterRadius = theDetector.constant<double>("Hcal_gasInlet_outer_radius");
double RPCGazInletLength = theDetector.constant<double>("Hcal_gasInlet_length");
double RPC_PadSeparation = theDetector.constant<double>("Hcal_pad_separation");
double Hcal_spacer_thickness = theDetector.constant<double>("Hcal_spacer_thickness");
double Hcal_spacer_separation = theDetector.constant<double>("Hcal_spacer_separation");
//========== fill data for reconstruction ============================
LayeredCalorimeterData* caloData = new LayeredCalorimeterData ;
caloData->layoutType = LayeredCalorimeterData::BarrelLayout ;
caloData->inner_symmetry = Hcal_inner_symmetry ;
caloData->outer_symmetry = Hcal_outer_symmetry ;
caloData->phi0 = 0 ; // fg: also hardcoded below
// general calculated parameters
double AngleRatio=tan(dd4hep::pi/Hcal_inner_symmetry);
double d_InnerOctoSize=2*AngleRatio*Hcal_inner_radius;//"d"
double LMin = 2*RPC_EdgeWidth+cell_sizeX*MinNumCellsInTransvPlane+(MinNumCellsInTransvPlane+1)*RPC_PadSeparation;
cout << "LMin=" << LMin << endl;
double Ynl = 0.5*d_InnerOctoSize - Hcal_nlayers*layerThickness/tan(dd4hep::twopi/Hcal_inner_symmetry);
double Hcal_outer_radius = sqrt((LMin-Ynl)*(LMin-Ynl) + (hPrime + Hcal_nlayers*layerThickness)*(hPrime + Hcal_nlayers*layerThickness));
if(Hcal_outer_radius!=Hcal_outer_radius_set){
cout << "calculated Hcal_outer_radius != input, will impact HcalEndcap and HcalEndcapRing. Hcal_outer_radius = " << Hcal_outer_radius
<< " but set as " << Hcal_outer_radius_set << " difference = " << Hcal_outer_radius-Hcal_outer_radius_set << endl;
cout << "if Coil put inside of Hcal, it is possible!" << endl;
}
/// extent of the calorimeter in the r-z-plane [ rmin, rmax, zmin, zmax ] in cm.
caloData->extent[0] = Hcal_inner_radius ;
caloData->extent[1] = Hcal_outer_radius ;
caloData->extent[2] = 0. ; // Barrel zmin is "0" by default.
caloData->extent[3] = Hcal_half_length ;
double Hcal_total_dim_y = Hcal_outer_radius - hPrime;
// the y_dim1_for_z kept as the original value in TDR
double Hcal_regular_chamber_dim_z = Hcal_normal_dim_z - 2 *(Hcal_lateral_plate_thickness);
//int N_cells_z = static_cast <int> ( (Hcal_regular_chamber_dim_z - 2*RPC_EdgeWidth - RPC_PadSeparation) / (Hcal_cell_dim_x + RPC_PadSeparation) );
// Hcal_cell_dim_z=(Hcal_regular_chamber_dim_z-RPC_PadSeparation )/N_cells_z
// - RPC_PadSeparation;
Tube solidCaloTube(0, Hcal_outer_radius, Hcal_half_length);
PolyhedraRegular solidOctogon(Hcal_inner_symmetry, 0, hPrime, 4*Hcal_half_length);
RotationZYX rotOctogon(dd4hep::twopi/2/Hcal_inner_symmetry,0,0);
SubtractionSolid solidCalo(solidCaloTube, solidOctogon, rotOctogon);
Volume logicCalo(name+"_radiator", solidCalo, stavesMaterial);
logicCalo.setAttributes(theDetector,x_det.regionStr(),x_det.limitsStr(),x_det.visStr());
PlacedVolume calo_pv = envelope.placeVolume(logicCalo, Position(0,0,0));
DetElement calo(det, "envelope", det_id);
calo.setPlacement(calo_pv);
if(tiledSeg) tiledSeg->setOffsetY(-(Hcal_regular_chamber_dim_z/2.-RPC_EdgeWidth)+0.5*cell_sizeZ);
for(int layer_id=1; layer_id<=Hcal_nlayers; layer_id++){
double yn = sqrt(Hcal_outer_radius*Hcal_outer_radius - (hPrime + layer_id*layerThickness)*(hPrime + layer_id*layerThickness));
double Yn = 0.5*d_InnerOctoSize - layer_id*layerThickness/tan(dd4hep::twopi/Hcal_inner_symmetry);
double halfX = Hcal_chamber_thickness/2.;
double halfY = (yn+Yn)/2.;
LayeredCalorimeterData::Layer caloLayer ;
caloLayer.cellSize0 = cell_sizeX;
caloLayer.cellSize1 = cell_sizeZ;
//double halfZ = Hcal_normal_dim_z / 2.;
double halfZ = Hcal_regular_chamber_dim_z / 2.;
double localXPos = hPrime + Hcal_radiator_thickness + Hcal_chamber_thickness/2. + (layer_id-1)*layerThickness;
double localYPos = -Yn + 0.5*(Yn + yn);
Box chamberSolid(halfY, halfZ, halfX);
string chamberLogical_name = name+_toString(layer_id,"_layer%d");
Volume chamberLogical(chamberLogical_name, chamberSolid, air);
chamberLogical.setAttributes(theDetector, x_layer.regionStr(), x_layer.limitsStr(), x_layer.visStr());
if(tiledSeg) tiledSeg->setLayerOffsetX((-(halfY-RPC_EdgeWidth)+0.5*cell_sizeX)*2/cell_sizeX);
string layer_name = name+_toString(layer_id,"_layer%d");
double nRadiationLengths=0.;
double nInteractionLengths=0.;
double thickness_sum=0;
nRadiationLengths = Hcal_radiator_thickness/(stavesMaterial.radLength());
nInteractionLengths = Hcal_radiator_thickness/(stavesMaterial.intLength());
double slice_pos_z = -halfX;
int slice_number = 0;
for(xml_coll_t k(x_layer,_U(slice)); k; ++k) {
xml_comp_t x_slice = k;
if(x_slice.materialStr()==Hcal_radiator_material) continue;
string slice_name = layer_name + _toString(slice_number,"_slice%d");
double slice_thickness = x_slice.thickness();
Material slice_material = theDetector.material(x_slice.materialStr());
if(layer_id==1) cout<<" Layer_slice: "<< slice_name<<" slice_thickness: "<< slice_thickness<< endl;
slice_pos_z += slice_thickness/2.;
nRadiationLengths += slice_thickness/(2.*slice_material.radLength());
nInteractionLengths += slice_thickness/(2.*slice_material.intLength());
thickness_sum += slice_thickness/2;
// Slice volume & box
Box sliceSolid(halfY, halfZ, slice_thickness/2.);
Volume sliceVol(slice_name, sliceSolid, slice_material);
if ( x_slice.isSensitive() ) {
sliceVol.setSensitiveDetector(sens);
if(RPC_EdgeWidth>0){
double RPC_GazInlet_In_Z = halfZ - RPC_EdgeWidth - RPCGazInletOuterRadius;
double RPC_GazInlet_In_Y = halfY - RPC_EdgeWidth/2;
double RPC_GazInlet_Out_Z = -RPC_GazInlet_In_Z;
double RPC_GazInlet_Out_Y = RPC_GazInlet_In_Y;
string mateialName = x_slice.attr<string>(_Unicode(edge_material));
Material edge_material = theDetector.material(mateialName);
Box solidRPCEdge1(halfY, halfZ, slice_thickness/2.);
Box solidRPCEdge2(halfY-RPC_EdgeWidth, halfZ-RPC_EdgeWidth, slice_thickness/2.);
SubtractionSolid solidRPCEdge(solidRPCEdge1, solidRPCEdge2, Position(0,0,0));
Volume logicRPCEdge(slice_name+"_edge", solidRPCEdge, edge_material);
logicRPCEdge.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
sliceVol.placeVolume(logicRPCEdge);
RotationZYX rotGaz(0, pi/2., 0);
Tube solidRPCGazInlet(RPCGazInletInnerRadius,RPCGazInletOuterRadius,RPC_EdgeWidth/*RPCGazInletLength*//2);
Volume logicRPCGazInlet(slice_name+"_GazInlet", solidRPCGazInlet, edge_material);
logicRPCGazInlet.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
logicRPCEdge.placeVolume(logicRPCGazInlet, Transform3D(rotGaz, Position(RPC_GazInlet_In_Y,RPC_GazInlet_In_Z, 0)));
logicRPCEdge.placeVolume(logicRPCGazInlet, Transform3D(rotGaz, Position(RPC_GazInlet_Out_Y,RPC_GazInlet_Out_Z, 0)));
Tube solidRPCGazInsideInlet(0,RPCGazInletInnerRadius,RPC_EdgeWidth/*RPCGazInletLength*//2);
Volume logicRPCGazInsideInlet(slice_name+"_GazInsideInlet", solidRPCGazInsideInlet, slice_material);
logicRPCGazInsideInlet.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),"SeeThrough");
logicRPCEdge.placeVolume(logicRPCGazInsideInlet, Transform3D(rotGaz, Position(RPC_GazInlet_In_Y,RPC_GazInlet_In_Z, 0)));
logicRPCEdge.placeVolume(logicRPCGazInsideInlet, Transform3D(rotGaz,Position(RPC_GazInlet_Out_Y,RPC_GazInlet_Out_Z, 0)));
}
if(Hcal_spacer_thickness>0){
Tube solidRPCSpacer(0,Hcal_spacer_thickness/2,slice_thickness/2);
Material space_material = theDetector.material(x_slice.attr<string>(_Unicode(spacer_material)));
Volume logicRPCSpacer(slice_name+"_spacer", solidRPCSpacer, space_material);
logicRPCSpacer.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
RotationZYX rotSpacer(0, 0, 0);
double gap_hZ = halfZ-RPC_EdgeWidth;
double gap_hY = halfY-RPC_EdgeWidth;
int y_number_of_separations = (int)(2*gap_hY/Hcal_spacer_separation);
int z_number_of_separations = (int)(2*gap_hZ/Hcal_spacer_separation);
double y_lateral_space = (2*gap_hY - y_number_of_separations*Hcal_spacer_separation)/2;
double z_lateral_space = (2*gap_hZ - z_number_of_separations*Hcal_spacer_separation)/2;
if(y_lateral_space < Hcal_spacer_thickness/2.){
y_number_of_separations = (int)((2*gap_hY-Hcal_spacer_thickness)/Hcal_spacer_separation);
y_lateral_space = (2*gap_hY - y_number_of_separations*Hcal_spacer_separation)/2;
}
if(z_lateral_space < Hcal_spacer_thickness/2.){
z_number_of_separations = (int)((2*gap_hZ-Hcal_spacer_thickness)/Hcal_spacer_separation);
z_lateral_space = (2*gap_hZ - z_number_of_separations*Hcal_spacer_separation)/2;
}
for(int y_counter = 0; y_counter <=y_number_of_separations; y_counter++){
double SpacerY = gap_hY - y_lateral_space - y_counter*Hcal_spacer_separation;
for(int z_counter = 0; z_counter <=z_number_of_separations; z_counter++){
double SpacerZ = gap_hZ - z_lateral_space - z_counter*Hcal_spacer_separation;
PlacedVolume space_pv = sliceVol.placeVolume(logicRPCSpacer, Transform3D(rotSpacer, Position(SpacerY,SpacerZ,0)));
}
}
}
caloLayer.inner_nRadiationLengths = nRadiationLengths;
caloLayer.inner_nInteractionLengths = nInteractionLengths;
caloLayer.inner_thickness = thickness_sum;
if(layer_id==1) cout<<"Hcal_Barrel: inner_thickness= "<<thickness_sum<<endl;
//Store readout gasgap thickness
caloLayer.sensitive_thickness = slice_thickness;
//Reset counters to measure "outside" quantitites
nRadiationLengths=0.;
nInteractionLengths=0.;
thickness_sum = 0.;
sliceVol.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),"SeeThrough");
}
else{
sliceVol.setAttributes(theDetector,x_slice.regionStr(),x_slice.limitsStr(),x_slice.visStr());
}
nRadiationLengths += slice_thickness/(2.*slice_material.radLength());
nInteractionLengths += slice_thickness/(2.*slice_material.intLength());
thickness_sum += slice_thickness/2;
// slice PlacedVolume
PlacedVolume slice_phv = chamberLogical.placeVolume(sliceVol,Position(0,0,slice_pos_z));
if ( x_slice.isSensitive() ) {
int slice_id = (layer_id > Hcal_nlayers)? 1:-1;
slice_phv.addPhysVolID("layer",layer_id).addPhysVolID("slice",slice_id);
}
DetElement sliceDetE(layer_name,_toString(slice_number,"slice%d"),x_det.id());
sliceDetE.setPlacement(slice_phv);
// Increment x position for next slice.
slice_pos_z += slice_thickness/2.;
// Increment slice number.
++slice_number;
}
caloLayer.outer_nRadiationLengths = nRadiationLengths;
caloLayer.outer_nInteractionLengths = nInteractionLengths;
caloLayer.outer_thickness = thickness_sum;
if(layer_id==1) cout << "Hcal_Barrel: outer_thickness= " << thickness_sum << endl;
double chamber_y_offset = -(-Hcal_total_dim_y/2. + (layer_id-1)*layerThickness + layerThickness/2.);
caloLayer.distance = Hcal_inner_radius + Hcal_total_dim_y/2.0 + chamber_y_offset ;
caloLayer.absorberThickness = Hcal_radiator_thickness ;
caloData->layers.push_back( caloLayer ) ;
double stave_phi_offset, module_z_offset;
//stave_phi_offset = pi/Hcal_inner_symmetry;
stave_phi_offset = pi*0.5;
for(int stave_id = 1; stave_id <= Hcal_inner_symmetry; stave_id++){
double phirot = stave_phi_offset+(stave_id-1)*pi/Hcal_inner_symmetry*2;
RotationZYX rot(pi/2, pi/2, 0); //phirot);
RotationZ rotZ(phirot);
RotationZYX rotAll = rotZ*rot;
RotationZYX rotInverse(phirot, 0, 0);
for(int module_id = 1; module_id <= Hcal_barrel_number_modules; module_id++){
module_z_offset = - Hcal_half_length + Hcal_normal_dim_z/2. + (module_id-1)*(Hcal_normal_dim_z+Hcal_modules_gap);
Position localPos(localXPos,localYPos,module_z_offset);
Position newPos = rotInverse*localPos;
Transform3D tran3D(rotAll, newPos);
PlacedVolume pv = logicCalo.placeVolume(chamberLogical, tran3D);
pv.addPhysVolID("stave",stave_id).addPhysVolID("module",module_id);//.addPhysVolID("layer",layer_id);
DetElement layer(calo, name+_toString(stave_id,"_stave%d")+_toString(module_id,"_module%d")+_toString(layer_id,"_layer%d"), det_id);
layer.setPlacement(pv);
}
}
}
det.addExtension< LayeredCalorimeterData >( caloData ) ;
return det;
}
DECLARE_DETELEMENT(SHcalRpc02_Barrel, create_detector)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment