Newer
Older
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
'''
Description:
geat4_pybind simulation
@Date : 2021/09/02 12:46:27
@Author : tanyuhang
@version : 1.0
@Date : 2023/04/18
@Author : xingchenli
@version : 2.0
'''
import sys
import random
# Geant4 main process
class Particles:
#model name for other class to use
_model = None
#other pars may use in other class define here
#use in pixel_detector
_randx = None
_randy = None
def __init__(self, my_d, absorber, g4_seed = random.randint(0, 1e7)):
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
"""
Description:
Geant4 main process
Simulate s_num particles through device
Record the energy depositon in the device
Parameters:
---------
energy_steps : list
Energy deposition of each step in simulation
edep_devices : list
Total energy deposition in device
@Modify:
---------
2023/04/18
"""
geant4_json = "./setting/absorber/" + absorber + ".json"
with open(geant4_json) as f:
g4_dic = json.load(f)
self.geant4_model = g4_dic['geant4_model']
detector_material=my_d.device_dict['material']
if(self.geant4_model=='pixel_detector'):
my_g4d = PixelDetectorConstruction(g4_dic,g4_dic['maxstep'])
Particles._model = self.geant4_model
Particles._randx = g4_dic['par_randx']
Particles._randy = g4_dic['par_randy']
#there's some parameter only use by this model
global s_devicenames,s_localposition
s_devicenames,s_localposition=[],[]
print("end g4")
else:
my_g4d = MyDetectorConstruction(my_d,g4_dic,detector_material,g4_dic['maxstep'])
if g4_dic['g4_vis']:
ui = None
ui = g4b.G4UIExecutive(len(sys.argv), sys.argv)
g4RunManager = g4b.G4RunManagerFactory.CreateRunManager(g4b.G4RunManagerType.Default)
rand_engine= g4b.RanecuEngine()
g4b.HepRandom.setTheEngine(rand_engine)
g4b.HepRandom.setTheSeed(g4_seed)
g4RunManager.SetUserInitialization(my_g4d)
# set physics list
physics_list = g4b.FTFP_BERT()
physics_list.RegisterPhysics(g4b.G4StepLimiterPhysics())
g4RunManager.SetUserInitialization(physics_list)
# define global parameter
global s_eventIDs,s_edep_devices,s_p_steps,s_energy_steps,s_events_angle
s_eventIDs,s_edep_devices,s_p_steps,s_energy_steps,s_events_angle=[],[],[],[],[]
#define action
g4RunManager.SetUserInitialization(MyActionInitialization(
g4_dic['par_in'],
g4_dic['par_out'],
g4_dic['par_type'],
g4_dic['par_energy'],
self.geant4_model))
if g4_dic['g4_vis']:
visManager = g4b.G4VisExecutive()
visManager.Initialize()
UImanager = g4b.G4UImanager.GetUIpointer()
UImanager.ApplyCommand('/control/execute param_file/g4macro/init_vis.mac')
# reduce verbose from physics list
UImanager.ApplyCommand('/process/em/verbose %d'%(verbose))
UImanager.ApplyCommand('/process/had/verbose %d'%(verbose))
UImanager.ApplyCommand('/run/initialize')
g4RunManager.BeamOn(int(g4_dic['total_events']))
if g4_dic['g4_vis']:
ui.SessionStart()
self.p_steps=s_p_steps
self.init_tz_device = 0
self.p_steps_current=[[[single_step[0]+my_d.l_x/2,
single_step[1]+my_d.l_y/2,
single_step[2]-self.init_tz_device]\
for single_step in p_step] for p_step in self.p_steps]
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
self.energy_steps=s_energy_steps
self.edep_devices=s_edep_devices
self.events_angle=s_events_angle
if(self.geant4_model=='pixel_detector'):
#record localpos in logicvolume
self.devicenames = s_devicenames
self.localposition = s_localposition
for i in range (0,len(s_devicenames)):
#print("eventID:",i)
#print("totalhits:",len(s_localposition[i]))
pass
del s_devicenames,s_localposition
if(self.geant4_model=="beam_monitor"):
hittotal=0
for particleenergy in s_edep_devices:
if(particleenergy>0):
hittotal=hittotal+1
self.hittotal=hittotal #count the numver of hit particles
number=0
total_steps=0
for step in s_p_steps:
total_steps=len(step)+total_steps
average_steps=total_steps/len(s_p_steps)
for step in s_p_steps:
if(len(step)>=average_steps*0.9):
break
number=number+1
newtype_step=s_p_steps[number] #new particle's step
self.p_steps_current=[[[single_step[0]+my_d.l_x/2,
single_step[1]+my_d.l_y/2,
single_step[2]-self.init_tz_device]\
for single_step in newtype_step]]
newtype_energy=[0 for i in range(len(newtype_step))]
for energy in s_energy_steps:
for i in range(len(newtype_step)):
if(len(energy)>i):
newtype_energy[i]+=energy[i]
self.energy_steps=[newtype_energy] #new particle's every step energy
del s_eventIDs,s_edep_devices,s_p_steps,s_energy_steps,s_events_angle
def __del__(self):
pass
#Geant4 for pixel_detector
class PixelDetectorConstruction(g4b.G4VUserDetectorConstruction):
"Pixel Detector Construction"
def __init__(self,g4_dic,maxStep=0.5):
g4b.G4VUserDetectorConstruction.__init__(self)
self.g4_dic = g4_dic
self.solid = {}
self.logical = {}
self.physical = {}
self.checkOverlaps = True
self.maxStep = maxStep*g4b.um
self.fStepLimit = g4b.G4UserLimits(self.maxStep)
self.create_world(g4_dic['world'])
if(g4_dic['object']):
for object_type in g4_dic['object']:#build all pixel first before build layer
if(object_type=="pixel"):
for every_object in g4_dic['object'][object_type]:
self.create_pixel(g4_dic['object'][object_type][every_object])
print("end pixel constrution")
for object_type in g4_dic['object']:
if(object_type=="layer"):
for every_object in g4_dic['object'][object_type]:
self.create_layer(g4_dic['object'][object_type][every_object])
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def create_world(self,world_type):
self.nist = g4b.G4NistManager.Instance()
material = self.nist.FindOrBuildMaterial(world_type)
self.solid['world'] = g4b.G4Box("world",
25000*g4b.um,
25000*g4b.um,
50*g4b.cm)
self.logical['world'] = g4b.G4LogicalVolume(self.solid['world'],
material,
"world")
self.physical['world'] = g4b.G4PVPlacement(None,
g4b.G4ThreeVector(0,0,0),
self.logical['world'],
"world", None, False,
0,self.checkOverlaps)
visual = g4b.G4VisAttributes()
#visual.SetVisibility(False)
self.logical['world'].SetVisAttributes(visual)
def create_pixel(self,object):#build pixel
#pixel logicvolumn
name = object['name']
material_type = self.nist.FindOrBuildMaterial(object['material'],
False)
print(type(material_type))
visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
sidex = object['side_x']*g4b.um
sidey = object['side_y']*g4b.um
sidez = object['side_z']*g4b.um
self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
self.logical[name] = g4b.G4LogicalVolume(self.solid[name],
material_type,
name)
#different part define
for every_object in object:
if(every_object.startswith("part")):
part = object[every_object]
p_name = part['name']
p_element_1 = self.nist.FindOrBuildElement(part['element_1'],False)
p_element_2 = self.nist.FindOrBuildElement(part['element_2'],False)
p_natoms_1 = part['natoms_1']
p_natoms_2 = part['natoms_2']
p_density = part['density']*g4b.g/g4b.cm3
p_mixture=g4b.G4Material(part['mixture_name'],p_density,2)
p_mixture.AddElement(p_element_1,p_natoms_1*g4b.perCent)
p_mixture.AddElement(p_element_2,p_natoms_2*g4b.perCent)
p_translation = g4b.G4ThreeVector(part['position_x']*g4b.um, part['position_y']*g4b.um, part['position_z']*g4b.um)
p_visual = g4b.G4VisAttributes(g4b.G4Color(part['colour'][0],part['colour'][1],part['colour'][2]))
p_sidex = part['side_x']*g4b.um
p_sidey = part['side_y']*g4b.um
p_sidez = part['side_z']*g4b.um
p_mother = self.logical[name]
self.solid[p_name] = g4b.G4Box(p_name, p_sidex/2., p_sidey/2., p_sidez/2.)
self.logical[p_name] = g4b.G4LogicalVolume(self.solid[p_name],
p_mixture,
p_name)
g4b.G4PVPlacement(None, p_translation,
self.logical[p_name],p_name,
p_mother, False,
0,self.checkOverlaps)
p_visual.SetVisibility(False)
self.logical[p_name].SetVisAttributes(p_visual)
visual.SetVisibility(True)
self.logical[name].SetVisAttributes(visual)
self.logical[name].SetUserLimits(self.fStepLimit)
def create_layer(self,object):#build layer
name = object['name']#temp use,muti layer need change Stepaction
material_type = self.nist.FindOrBuildMaterial("G4_Galactic",
False)
pixel_type = object['pixel_type']
row = object['row']
column = object['column']
mother = self.physical['world']
translation = g4b.G4ThreeVector(object['position_x']*g4b.um, object['position_y']*g4b.um, object['position_z']*g4b.um)
rotation = g4b.G4RotationMatrix()
rotation.rotateX(object['rotation_xyz'][0]*g4b.degree)
rotation.rotateY(object['rotation_xyz'][1]*g4b.degree)
rotation.rotateZ(object['rotation_xyz'][2]*g4b.degree)
visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
motherBox = g4b.G4Box("MotherBox", 1.0 * g4b.cm, 1.0 * g4b.cm, 250 * g4b.um)
self.logical[name] = g4b.G4LogicalVolume(motherBox,
material_type,
name)
for i in range(0,int(row)):
for j in range(0,int(column)):
pixel = self.g4_dic['object']['pixel'][pixel_type]
t_translation = g4b.G4ThreeVector((pixel['side_x']*(j+1/2-column/2))*g4b.um, (pixel['side_y']*(i+1/2-row/2))*g4b.um,0.0*g4b.um)
t_pixelname = pixel_type+'_'+str(i)+'_'+str(j)+'_'+name
g4b.G4PVPlacement(None, t_translation,
self.logical[pixel_type],t_pixelname,
self.logical[name], False,
i*int(column)+j,self.checkOverlaps)
self.physical[name] = g4b.G4PVPlacement(rotation,translation,
name,self.logical[name],
mother, False,
0,True)
visual.SetVisibility(False)
self.logical[name].SetVisAttributes(visual)
self.logical[name].SetUserLimits(self.fStepLimit)
def Construct(self): # return the world volume
self.fStepLimit.SetMaxAllowedStep(self.maxStep)
return self.physical['world']
#Geant4 for object
class MyDetectorConstruction(g4b.G4VUserDetectorConstruction):
"My Detector Construction"
def __init__(self,my_d,g4_dic,detector_material,maxStep=0.5):
g4b.G4VUserDetectorConstruction.__init__(self)
self.solid = {}
self.logical = {}
self.physical = {}
self.checkOverlaps = True
self.create_world(g4_dic['world'])
if(detector_material=='Si'):
detector={
"name" : "Device",
"material" : "G4_Si",
"side_x" : my_d.l_x,
"side_y" : my_d.l_y,
"side_z" : my_d.l_z,
"colour" : [1,0,0],
"position_x" : 0,
"position_y" : 0,
"position_z" : my_d.l_z/2.0
}
self.create_elemental(detector)
if(detector_material=='SiC' and self.geant4_model != 'cflm'):
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
detector={
"name" : "Device",
"material_1" : "Si",
"material_2" : "C",
"compound_name" :"SiC",
"density" : 3.2,
"natoms_1" : 50,
"natoms_2" : 50,
"side_x" : my_d.l_x,
"side_y" : my_d.l_y,
"side_z" : my_d.l_z,
"colour" : [1,0,0],
"position_x" : 0,
"position_y" : 0,
"position_z" : my_d.l_z/2.0,
"tub" : {}
}
self.create_binary_compounds(detector)
if(g4_dic['object']):
for object_type in g4_dic['object']:
if(object_type=="elemental"):
for every_object in g4_dic['object'][object_type]:
self.create_elemental(g4_dic['object'][object_type][every_object])
if(object_type=="binary_compounds"):
for every_object in g4_dic['object'][object_type]:
self.create_binary_compounds(g4_dic['object'][object_type][every_object])
self.maxStep = maxStep*g4b.um
self.fStepLimit = g4b.G4UserLimits(self.maxStep)
if (self.geant4_model == 'cflm'):
self.logical["detector"].SetUserLimits(self.fStepLimit)
else:
self.logical["Device"].SetUserLimits(self.fStepLimit)
def create_world(self,world_type):
self.nist = g4b.G4NistManager.Instance()
material = self.nist.FindOrBuildMaterial(world_type)
self.solid['world'] = g4b.G4Box("world",
self.logical['world'] = g4b.G4LogicalVolume(self.solid['world'],
material,
"world")
self.physical['world'] = g4b.G4PVPlacement(None,
g4b.G4ThreeVector(0,0,0),
self.logical['world'],
"world", None, False,
0,self.checkOverlaps)
self.logical['world'].SetVisAttributes(g4b.G4VisAttributes.GetInvisible())
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
print(name)
if name == 'pipe':
material_type = self.nist.FindOrBuildMaterial(object['material'],
False)
self.rotation = g4b.G4RotationMatrix()
self.rotation.rotateX(3*math.pi/2)
translation = g4b.G4ThreeVector(object['position_x']*g4b.um, object['position_y']*g4b.um, object['position_z']*g4b.um)
visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
mother = self.physical['world']
Rmin = object['Rmin']*g4b.um
Rmax = object['Rmax']*g4b.um
Pipe_Z = object['Pipe_Z']*g4b.um
PipeSphi = object['PipeSphi']*g4b.deg
PipeDphi = object['PipeDphi']*g4b.deg
self.solid[name] = g4b.G4Tubs("Pipe",
Rmin, Rmax, Pipe_Z/2,PipeSphi,PipeDphi)
self.logical[name] = g4b.G4LogicalVolume(self.solid[name],
material_type,
name)
self.physical[name] = g4b.G4PVPlacement(self.rotation,translation,
name,self.logical[name],
mother, False,
0,self.checkOverlaps)
self.logical[name].SetVisAttributes(visual)
else:
material_type = self.nist.FindOrBuildMaterial(object['material'],
False)
translation = g4b.G4ThreeVector(object['position_x']*g4b.um, object['position_y']*g4b.um, object['position_z']*g4b.um)
visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
mother = self.physical['world']
sidex = object['side_x']*g4b.um
sidey = object['side_y']*g4b.um
sidez = object['side_z']*g4b.um
self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
self.logical[name] = g4b.G4LogicalVolume(self.solid[name],
material_type,
name)
self.physical[name] = g4b.G4PVPlacement(None,translation,
name,self.logical[name],
mother, False,
0,self.checkOverlaps)
self.logical[name].SetVisAttributes(visual)
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
def create_binary_compounds(self,object):
name = object['name']
material_1 = self.nist.FindOrBuildElement(object['material_1'],False)
material_2 = self.nist.FindOrBuildElement(object['material_2'],False)
material_density = object['density']*g4b.g/g4b.cm3
compound=g4b.G4Material(object['compound_name'],material_density,2)
compound.AddElement(material_1,object['natoms_1']*g4b.perCent)
compound.AddElement(material_2,object['natoms_2']*g4b.perCent)
translation = g4b.G4ThreeVector(object['position_x']*g4b.um, object['position_y']*g4b.um, object['position_z']*g4b.um)
visual = g4b.G4VisAttributes(g4b.G4Color(object['colour'][0],object['colour'][1],object['colour'][2]))
mother = self.physical['world']
sidex = object['side_x']*g4b.um
sidey = object['side_y']*g4b.um
sidez = object['side_z']*g4b.um
if not(object['tub']):
self.solid[name] = g4b.G4Box(name, sidex/2., sidey/2., sidez/2.)
else:
self.solid[name+"box"] = g4b.G4Box(name+"box",
sidex/2., sidey/2., sidez/2.)
self.solid[name+"tub"] = g4b.G4Tubs(name+"tub", 0,object['tub']['tub_radius']*g4b.um,
object['tub']['tub_depth']*g4b.um, 0,360*g4b.deg)
self.solid[name] = g4b.G4SubtractionSolid(name,
self.solid[name+"box"],
self.solid[name+"tub"])
self.logical[name] = g4b.G4LogicalVolume(self.solid[name],
compound,
name)
self.physical[name] = g4b.G4PVPlacement(None,translation,
name,self.logical[name],
mother, False,
0,self.checkOverlaps)
self.logical[name].SetVisAttributes(visual)
def Construct(self): # return the world volume
self.fStepLimit.SetMaxAllowedStep(self.maxStep)
return self.physical['world']
class MyPrimaryGeneratorAction(g4b.G4VUserPrimaryGeneratorAction):
"My Primary Generator Action"
def __init__(self,par_in,par_out,par_type,par_energy,geant4_model):
g4b.G4VUserPrimaryGeneratorAction.__init__(self)
self.geant4_model=geant4_model
par_direction = [ par_out[i] - par_in[i] for i in range(3) ]
particle_table = g4b.G4ParticleTable.GetParticleTable()
particle = particle_table.FindParticle(par_type) # define particle
beam = g4b.G4ParticleGun(1)
beam.SetParticleEnergy(par_energy*g4b.MeV)
beam.SetParticleMomentumDirection(g4b.G4ThreeVector(par_direction[0],
par_direction[1],
par_direction[2]))
beam.SetParticleDefinition(particle)
beam.SetParticlePosition(g4b.G4ThreeVector(par_in[0]*g4b.um,
par_in[1]*g4b.um,
par_in[2]*g4b.um))
self.particleGun = beam
self.position = par_in
if(self.geant4_model=="time_resolution"):
beam2 = g4b.G4ParticleGun(1)
beam2.SetParticleEnergy(0.546*g4b.MeV)
beam2.SetParticleMomentumDirection(g4b.G4ThreeVector(par_direction[0],
par_direction[1],
par_direction[2]))
beam2.SetParticleDefinition(particle)
beam2.SetParticlePosition(g4b.G4ThreeVector(par_in[0]*g4b.um,
par_in[1]*g4b.um,
par_in[2]*g4b.um))
self.particleGun2 = beam2
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
if(self.geant4_model=="pixel_detector"):
self.directionx = par_direction[0]
self.directiony = par_direction[1]
self.directionz = par_direction[2]
def GeneratePrimaries(self, event):
if(self.geant4_model=="time_resolution"):
self.particleGun.GeneratePrimaryVertex(event)
self.particleGun2.GeneratePrimaryVertex(event)
pass
elif(self.geant4_model=="pixel_detector"):
randx = Particles._randx
randy = Particles._randy
rdo_x = random.uniform(-randx,randx)
rdo_y = random.uniform(-randy,randy)
rdi_x = random.uniform(-randx,randx)
rdi_y = random.uniform(-randy,randy)
direction = g4b.G4ThreeVector(rdo_x,rdo_y,self.directionz)
self.particleGun.SetParticleMomentumDirection(direction)
self.particleGun.SetParticlePosition(g4b.G4ThreeVector(self.position[0]*g4b.um,
self.position[1]*g4b.um,
self.position[2]*g4b.um))
self.particleGun.GeneratePrimaryVertex(event)
#print("direction:",rdo_x-rdi_x,rdo_y-rdi_y,self.directionz)
#print(rdi_x,rdi_y,self.position[2])
else:
self.particleGun.GeneratePrimaryVertex(event)
class MyRunAction(g4b.G4UserRunAction):
def __init__(self):
g4b.G4UserRunAction.__init__(self)
milligray = 1.e-3*g4b.gray
microgray = 1.e-6*g4b.gray
nanogray = 1.e-9*g4b.gray
picogray = 1.e-12*g4b.gray
g4b.G4UnitDefinition("milligray", "milliGy", "Dose", milligray)
g4b.G4UnitDefinition("microgray", "microGy", "Dose", microgray)
g4b.G4UnitDefinition("nanogray", "nanoGy", "Dose", nanogray)
g4b.G4UnitDefinition("picogray", "picoGy", "Dose", picogray)
def BeginOfRunAction(self, run):
g4b.G4RunManager.GetRunManager().SetRandomNumberStore(False)
def EndOfRunAction(self, run):
nofEvents = run.GetNumberOfEvent()
if nofEvents == 0:
print("nofEvents=0")
return
class MyEventAction(g4b.G4UserEventAction):
"My Event Action"
def __init__(self, runAction, point_in, point_out):
g4b.G4UserEventAction.__init__(self)
self.fRunAction = runAction
self.point_in = point_in
self.point_out = point_out
def BeginOfEventAction(self, event):
self.edep_device=0.
self.event_angle = 0.
self.p_step = []
self.energy_step = []
#use in pixel_detector
self.volume_name = []
self.localposition = []
def EndOfEventAction(self, event):
eventID = event.GetEventID()
#print("eventID:%s"%eventID)
if len(self.p_step):
point_a = [ b-a for a,b in zip(self.point_in,self.point_out)]
point_b = [ c-a for a,c in zip(self.point_in,self.p_step[-1])]
self.event_angle = cal_angle(point_a,point_b)
else:
self.event_angle = None
save_geant4_events(eventID,self.edep_device,
self.p_step,self.energy_step,self.event_angle)
if(Particles._model == "pixel_detector"):
save_pixel_detector_events(self.volume_name,self.localposition)
#print("Detector: total energy:", g4b.G4BestUnit(self.edep_device, "Energy"), end="")
def RecordDevice(self, edep,point_in,point_out):
self.edep_device += edep
self.p_step.append([point_in.getX()*1000,
point_in.getY()*1000,point_in.getZ()*1000])
self.energy_step.append(edep)
def RecordDetector(self, edep,point_in,point_out):
self.edep_device += edep
self.p_step.append([point_in.getX()*1000,
point_in.getY()*1000,point_in.getZ()*1000])
self.energy_step.append(edep)
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
def RecordPixel(self,step):
edep = step.GetTotalEnergyDeposit()
point_pre = step.GetPreStepPoint()
point_post = step.GetPostStepPoint()
point_in = point_pre.GetPosition()
point_out = point_post.GetPosition()
if(edep<=0.0):
return
touchable = point_pre.GetTouchable()
volume = touchable.GetVolume()
transform = touchable.GetHistory().GetTopTransform()
localpos = transform.TransformPoint(point_in)
self.edep_device += edep
self.p_step.append([point_in.getX()*1000,
point_in.getY()*1000,point_in.getZ()*1000])
self.energy_step.append(edep)
#save only in RecordPixel
self.volume_name.append(volume.GetName())
self.localposition.append([localpos.getX()/g4b.um,localpos.getY()/g4b.um,localpos.getZ()/g4b.um])
#print("edep:", edep)
#print("Volume Name:", volume.GetName())
#print("Global Position in Worlds Volume:",point_in/g4b.um)
#print("Local Position in Pixel:", localpos/g4b.um)
def save_geant4_events(eventID,edep_device,p_step,energy_step,event_angle):
if(len(p_step)>0):
s_eventIDs.append(eventID)
s_edep_devices.append(edep_device)
s_p_steps.append(p_step)
s_energy_steps.append(energy_step)
s_events_angle.append(event_angle)
else:
s_eventIDs.append(eventID)
s_edep_devices.append(edep_device)
s_p_steps.append([[0,0,0]])
s_energy_steps.append([0])
s_events_angle.append(event_angle)
def save_pixel_detector_events(volume_name,localposition):
global s_devicenames,s_localposition
s_devicenames.append(volume_name)
s_localposition.append(localposition)
#print("volume_name len:",len(volume_name))
#print("localposition len: ",len(localposition))
def cal_angle(point_a,point_b):
"Calculate the angle between point a and b"
x=np.array(point_a)
y=np.array(point_b)
l_x=np.sqrt(x.dot(x))
l_y=np.sqrt(y.dot(y))
dot_product=x.dot(y)
if l_x*l_y > 0:
cos_angle_d=dot_product/(l_x*l_y)
angle_d=np.arccos(cos_angle_d)*180/np.pi
else:
angle_d=9999
return angle_d
class MySteppingAction(g4b.G4UserSteppingAction):
"My Stepping Action"
def __init__(self, eventAction):
g4b.G4UserSteppingAction.__init__(self)
self.fEventAction = eventAction
def UserSteppingAction(self, step):
edep = step.GetTotalEnergyDeposit()
point_pre = step.GetPreStepPoint()
point_post = step.GetPostStepPoint()
point_in = point_pre.GetPosition()
point_out = point_post.GetPosition()
volume = step.GetPreStepPoint().GetTouchable().GetVolume().GetLogicalVolume()
volume_name = volume.GetName()
if(volume_name == "Device"):
self.fEventAction.RecordDevice(edep,point_in,point_out)
if(volume_name.startswith("Taichu")):
self.fEventAction.RecordPixel(step)
if(volume_name == "detector"):
self.fEventAction.RecordDetector(edep, point_in, point_out)
return
class MyActionInitialization(g4b.G4VUserActionInitialization):
def __init__(self,par_in,par_out,par_type,par_energy,geant4_model):
g4b.G4VUserActionInitialization.__init__(self)
self.par_in = par_in
self.par_out = par_out
self.par_type=par_type
self.par_energy=par_energy
self.geant4_model=geant4_model
def Build(self):
self.SetUserAction(MyPrimaryGeneratorAction(self.par_in,
self.par_out,
self.par_type,
self.par_energy,
self.geant4_model))
# global myRA_action
myRA_action = MyRunAction()
self.SetUserAction(myRA_action)
myEA = MyEventAction(myRA_action,self.par_in,self.par_out)
self.SetUserAction(myEA)
self.SetUserAction(MySteppingAction(myEA))