Newer
Older
#include "DD4hep/objects/DetectorInterna.h"
#include "DDRec/MaterialManager.h"
#include <exception>
#include <memory>
#include "TGeoMatrix.h"
#include "TGeoShape.h"
#include "TRotation.h"
namespace DD4hep {
namespace DDRec {
using namespace Geometry ;
//--------------------------------------------------------
// /** Copy c'tor - copies handle */
// SurfaceMaterial::SurfaceMaterial( Geometry::Material m ) : Geometry::Material( m ) {}
// SurfaceMaterial::SurfaceMaterial( const SurfaceMaterial& sm ) : Geometry::Material( sm ) {
// // (*this).Geometry::Material::m_element = sm.Geometry::Material::m_element ;
// }
// SurfaceMaterial:: ~SurfaceMaterial() {}
//--------------------------------------------------------
SurfaceData::SurfaceData() : _type( SurfaceType() ) ,
_u( Vector3D() ) ,
_v( Vector3D() ) ,
_n( Vector3D() ) ,
_o( Vector3D() ) ,
_th_i( 0. ),
_th_o( 0. ),
_innerMat( MaterialData() ),
_outerMat( MaterialData() ) {
}
SurfaceData::SurfaceData( SurfaceType type , double thickness_inner ,double thickness_outer,
Vector3D u ,Vector3D v ,Vector3D n ,Vector3D o ) : _type(type ) ,
_u( u ) ,
_v( v ) ,
_n( n ) ,
_o( o ),
_th_i( thickness_inner ),
_th_o( thickness_outer ),
_innerMat( MaterialData() ),
_outerMat( MaterialData() ) {
VolSurface::VolSurface( Volume vol, SurfaceType type, double thickness_inner ,double thickness_outer,
Vector3D u ,Vector3D v ,Vector3D n ,Vector3D o ) :
Geometry::Handle< SurfaceData >( new SurfaceData( type, thickness_inner ,thickness_outer, u,v,n,o) ) ,
ISurface::Vector2D VolSurface::globalToLocal( const Vector3D& point) const {
Vector3D p = point - origin() ;
// create new orthogonal unit vectors
// FIXME: these vectors should be cached really ...
double uv = u() * v() ;
Vector3D uprime = ( u() - uv * v() ).unit() ;
Vector3D vprime = ( v() - uv * u() ).unit() ;
double uup = u() * uprime ;
double vvp = v() * vprime ;
return ISurface::Vector2D( p*uprime / uup , p*vprime / vvp ) ;
}
Vector3D VolSurface::localToGlobal( const ISurface::Vector2D& point) const {
Vector3D g = origin() + point[0] * u() + point[1] * v() ;
return g ;
}
/** Distance to surface */
double VolPlane::distance(const Vector3D& point ) const {
return ( point - origin() ) * normal() ;
}
/// Checks if the given point lies within the surface
bool VolPlane::insideBounds(const Vector3D& point, double epsilon) const {
double dist = std::abs ( distance( point ) ) ;
bool inShape = volume()->GetShape()->Contains( point.const_array() ) ;
std::cout << " ** Surface::insideBound( " << point << " ) - distance = " << dist
<< " origin = " << origin() << " normal = " << normal()
<< " p * n = " << point * normal()
<< " isInShape : " << inShape << std::endl ;
return dist < epsilon && inShape ;
#else
//fixme: older versions of ROOT (~<5.34.10 ) take a non const pointer as argument - therefore use a const cast here for the time being ...
return ( std::abs ( distance( point ) ) < epsilon ) && volume()->GetShape()->Contains( const_cast<double*> (point.const_array() ) ) ;
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
//=============================================================================================================
Vector3D VolCylinder::u( const Vector3D& point ) const {
// for now we just have u const as (0,0,1)
point.x() ; return VolSurface::u() ;
}
Vector3D VolCylinder::v(const Vector3D& point ) const {
Vector3D n( 1. , point.phi() , 0. , Vector3D::cylindrical ) ;
// std::cout << " u : " << u()
// << " n : " << n
// << " u X n :" << u().cross( n ) ;
return u().cross( n ) ;
}
Vector3D VolCylinder::normal(const Vector3D& point ) const {
// normal is just given by phi of the point
return Vector3D( 1. , point.phi() , 0. , Vector3D::cylindrical ) ;
}
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
ISurface::Vector2D VolCylinder::globalToLocal( const Vector3D& point) const {
// cylinder is parallel to here so u is dZ and v is r *dPhi
double phi = point.phi() - origin().phi() ;
while( phi < -M_PI ) phi += 2.*M_PI ;
while( phi > M_PI ) phi -= 2.*M_PI ;
return ISurface::Vector2D( point.z() - origin().z() , origin().rho() * phi ) ;
}
Vector3D VolCylinder::localToGlobal( const ISurface::Vector2D& point) const {
double z = point.u() + origin().z() ;
double phi = point.v() / origin().rho() + origin().phi() ;
while( phi < -M_PI ) phi += 2.*M_PI ;
while( phi > M_PI ) phi -= 2.*M_PI ;
return Vector3D( origin().rho() , phi, z , Vector3D::cylindrical ) ;
}
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
VolCylinder::VolCylinder( Geometry::Volume vol, SurfaceType type, double thickness_inner ,double thickness_outer, Vector3D o ) :
VolSurface( vol, type, thickness_inner, thickness_outer, Vector3D() , Vector3D() , Vector3D() , o ) {
Vector3D u( 0., 0., 1. ) ;
Vector3D o_rphi( o.x() , o.y() , 0. ) ;
Vector3D n = o_rphi.unit() ;
Vector3D v = u.cross( n ) ;
setU( u ) ;
setV( v ) ;
setNormal( n ) ;
object<SurfaceData>()._type.setProperty( SurfaceType::Plane , false ) ;
object<SurfaceData>()._type.setProperty( SurfaceType::Cylinder , true ) ;
object<SurfaceData>()._type.checkParallelToZ( *this ) ;
object<SurfaceData>()._type.checkOrthogonalToZ( *this ) ;
}
/** Distance to surface */
double VolCylinder::distance(const Vector3D& point ) const {
return point.rho() - origin().rho() ;
}
/// Checks if the given point lies within the surface
bool VolCylinder::insideBounds(const Vector3D& point, double epsilon) const {
double distR = std::abs( distance( point ) ) ;
bool inShapeT = volume()->GetShape()->Contains( const_cast<double*> ( point.const_array() ) ) ;
std::cout << " ** Surface::insideBound( " << point << " ) - distance = " << distR
<< " origin = " << origin()
<< " isInShape : " << inShapeT << std::endl ;
return ( std::abs ( distance( point ) ) < epsilon ) && volume()->GetShape()->Contains( const_cast<double*> (point.const_array()) ) ;
//================================================================================================================
VolSurfaceList* volSurfaceList( DetElement& det ) {
VolSurfaceList* list = 0 ;
try {
list = det.extension< VolSurfaceList >() ;
} catch( std::runtime_error e){
list = det.addExtension<VolSurfaceList >( new VolSurfaceList ) ;
}
return list ;
}
//======================================================================================================================
bool findVolume( PlacedVolume pv, Volume theVol, std::list< PlacedVolume >& volList ) {
volList.push_back( pv ) ;
// unsigned count = volList.size() ;
// for(unsigned i=0 ; i < count ; ++i) {
// std::cout << " **" ;
// }
// std::cout << " searching for volume: " << theVol.name() << " " << std::hex << theVol.ptr() << " <-> pv.volume : " << pv.name() << " " << pv.volume().ptr()
// << " pv.volume().ptr() == theVol.ptr() " << (pv.volume().ptr() == theVol.ptr() )
// << std::endl ;
if( pv.volume().ptr() == theVol.ptr() ) {
return true ;
} else {
//--------------------------------
const TGeoNode* node = pv.ptr();
if ( !node ) {
// std::cout << " *** findVolume: Invalid placement: - node pointer Null for volume: " << pv.name() << std::endl ;
throw std::runtime_error("*** findVolume: Invalid placement: - node pointer Null ! " + std::string( pv.name() ) );
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// std::cout << " ndau = " << node->GetNdaughters() << std::endl ;
for (Int_t idau = 0, ndau = node->GetNdaughters(); idau < ndau; ++idau) {
TGeoNode* daughter = node->GetDaughter(idau);
PlacedVolume placement( daughter );
if ( !placement.data() ) {
throw std::runtime_error("*** findVolume: Invalid not instrumented placement:"+std::string(daughter->GetName())
+" [Internal error -- bad detector constructor]");
}
PlacedVolume pv_dau = Ref_t(daughter); // why use a Ref_t here ???
if( findVolume( pv_dau , theVol , volList ) ) {
// std::cout << " ----- found in daughter volume !!! " << std::hex << pv_dau.volume().ptr() << std::endl ;
return true ;
}
}
// ------- not found:
volList.pop_back() ;
return false ;
//--------------------------------
}
}
Surface::Surface( Geometry::DetElement det, VolSurface volSurf ) : _det( det) , _volSurf( volSurf ),
_wtM(0) , _id( 0) , _type( _volSurf.type() ) {
initialize() ;
}
const IMaterial& Surface::innerMaterial() const {
// std::cout << " **** Surface::innerMaterial() " << mat << std::endl ;
MaterialManager matMgr ;
Vector3D p = _o - innerThickness() * _n ;
const MaterialVec& materials = matMgr.materialsBetween( _o , p ) ;
// std::cout << " ####### found materials between points : " << _o << " and " << p << " : " ;
// for( unsigned i=0,n=materials.size();i<n;++i){
// std::cout << materials[i].first.name() << "[" << materials[i].second << "], " ;
// }
// std::cout << std::endl ;
// const MaterialData& matAvg = matMgr.createAveragedMaterial( materials ) ;
// mat = matAvg ;
// std::cout << " **** Surface::innerMaterial() - assigning averaged material to surface : " << mat << std::endl ;
mat = ( materials.size() > 1 ? matMgr.createAveragedMaterial( materials ) : materials[0].first ) ;
return mat ;
}
const IMaterial& Surface::outerMaterial() const {
MaterialManager matMgr ;
Vector3D p = _o + outerThickness() * _n ;
const MaterialVec& materials = matMgr.materialsBetween( _o , p ) ;
mat = ( materials.size() > 1 ? matMgr.createAveragedMaterial( materials ) : materials[0].first ) ;
return mat ;
ISurface::Vector2D Surface::globalToLocal( const Vector3D& point) const {
Vector3D p = point - origin() ;
// create new orthogonal unit vectors
// FIXME: these vectors should be cached really ...
double uv = u() * v() ;
Vector3D uprime = ( u() - uv * v() ).unit() ;
Vector3D vprime = ( v() - uv * u() ).unit() ;
double uup = u() * uprime ;
double vvp = v() * vprime ;
return ISurface::Vector2D( p*uprime / uup , p*vprime / vvp ) ;
}
Vector3D Surface::localToGlobal( const ISurface::Vector2D& point) const {
Vector3D g = origin() + point[0] * u() + point[1] * v() ;
return g ;
}
double Surface::distance(const Vector3D& point ) const {
double pa[3] ;
_wtM->MasterToLocal( point , pa ) ;
Vector3D localPoint( pa ) ;
return ( _volSurf.type().isPlane() ? VolPlane(_volSurf).distance( localPoint ) : VolCylinder(_volSurf).distance( localPoint ) ) ;
}
bool Surface::insideBounds(const Vector3D& point, double epsilon) const {
double pa[3] ;
_wtM->MasterToLocal( point , pa ) ;
Vector3D localPoint( pa ) ;
return ( _volSurf.type().isPlane() ? VolPlane(_volSurf).insideBounds( localPoint, epsilon ) : VolCylinder(_volSurf).insideBounds( localPoint , epsilon) ) ;
void Surface::initialize() {
// first we need to find the right volume for the local surface in the DetElement's volumes
std::list< PlacedVolume > pVList ;
PlacedVolume pv = _det.placement() ;
Volume theVol = _volSurf.volume() ;
if( ! findVolume( pv, theVol , pVList ) ){
std::stringstream sst ; sst << " ***** ERROR: Volume " << theVol.name() << " not found for DetElement " << _det.name() << " with surface " ;
throw std::runtime_error( sst.str() ) ;
// std::cout << " **** Surface::initialize() # placements for surface = " << pVList.size()
// << " worldTransform : "
// << std::endl ;
//=========== compute and cache world transform for surface ==========
const TGeoHMatrix& wm = _det.worldTransformation() ;
for( std::list<PlacedVolume>::iterator it= pVList.begin(), n = pVList.end() ; it != n ; ++it ){
PlacedVolume pv = *it ;
TGeoMatrix* m = pv->GetMatrix();
std::cout << " +++ matrix for placed volume : " << std::endl ;
m->Print() ;
}
#endif
// need to get the inverse transformation ( see Detector.cpp )
// std::auto_ptr<TGeoHMatrix> wtI( new TGeoHMatrix( wm.Inverse() ) ) ;
// has been fixed now, no need to get the inverse anymore:
std::auto_ptr<TGeoHMatrix> wtI( new TGeoHMatrix( wm ) ) ;
//---- if the volSurface is not in the DetElement's volume, we need to mutliply the path to the volume to the
// DetElements world transform
for( std::list<PlacedVolume>::iterator it = ++( pVList.begin() ) , n = pVList.end() ; it != n ; ++it ){
PlacedVolume pv = *it ;
TGeoMatrix* m = pv->GetMatrix();
// std::cout << " +++ matrix for placed volume : " << std::endl ;
// m->Print() ;
// std::cout << " +++ new world transform matrix : " << std::endl ;
#if 0 //fixme: which convention to use here - the correct should be wtI, however it is the inverse of what is stored in DetElement ???
std::auto_ptr<TGeoHMatrix> wt( new TGeoHMatrix( wtI->Inverse() ) ) ;
wt->Print() ;
// cache the world transform for the surface
_wtM = wt.release() ;
#else
// wtI->Print() ;
// cache the world transform for the surface
_wtM = wtI.release() ;
#endif
// ============ now fill the global surface vectors ==========================
double ua[3], va[3], na[3], oa[3] ;
_wtM->LocalToMasterVect( _volSurf.u() , ua ) ;
_wtM->LocalToMasterVect( _volSurf.v() , va ) ;
_wtM->LocalToMasterVect( _volSurf.normal() , na ) ;
_wtM->LocalToMaster ( _volSurf.origin() , oa ) ;
_u.fill( ua ) ;
_v.fill( va ) ;
_n.fill( na ) ;
_o.fill( oa ) ;
// std::cout << " --- local and global surface vectors : ------- " << std::endl
// << " u : " << _volSurf.u() << " - " << _u << std::endl
// << " v : " << _volSurf.v() << " - " << _v << std::endl
// << " n : " << _volSurf.normal() << " - " << _n << std::endl
// << " o : " << _volSurf.origin() << " - " << _o << std::endl ;
// =========== check parallel and orthogonal to Z ===================
_type.checkOrthogonalToZ( *this ) ;
//======== set the unique surface ID from the DetElement ( and placements below ? )
// just use the DetElement ID for now ...
_id = _det.volumeID() ;
// typedef PlacedVolume::VolIDs IDV ;
// DetElement d = _det ;
// while( d.isValid() && d.parent().isValid() ){
// PlacedVolume pv = d.placement() ;
// if( pv.isValid() ){
// const IDV& idV = pv.volIDs() ;
// std::cout << " VolIDs : " << d.name() << std::endl ;
// for( unsigned i=0, n=idV.size() ; i<n ; ++i){
// std::cout << " " << idV[i].first << " - " << idV[i].second << std::endl ;
// }
// }
// d = d.parent() ;
// }
}
//===================================================================================================================
std::vector< std::pair<Vector3D, Vector3D> > Surface::getLines(unsigned nMax) {
const static double epsilon = 1e-6 ;
std::vector< std::pair<Vector3D, Vector3D> > lines ;
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
// get local and global surface vectors
const DDSurfaces::Vector3D& lu = _volSurf.u() ;
const DDSurfaces::Vector3D& lv = _volSurf.v() ;
const DDSurfaces::Vector3D& ln = _volSurf.normal() ;
const DDSurfaces::Vector3D& lo = _volSurf.origin() ;
Volume vol = volume() ;
const TGeoShape* shape = vol->GetShape() ;
if( type().isPlane() ) {
if( shape->IsA() == TGeoBBox::Class() ) {
TGeoBBox* box = ( TGeoBBox* ) shape ;
DDSurfaces::Vector3D boxDim( box->GetDX() , box->GetDY() , box->GetDZ() ) ;
bool isYZ = std::fabs( ln.x() - 1.0 ) < epsilon ; // normal parallel to x
bool isXZ = std::fabs( ln.y() - 1.0 ) < epsilon ; // normal parallel to y
bool isXY = std::fabs( ln.z() - 1.0 ) < epsilon ; // normal parallel to z
if( isYZ || isXZ || isXY ) { // plane is parallel to one of the box' sides -> need 4 vertices from box dimensions
// if isYZ :
unsigned uidx = 1 ;
unsigned vidx = 2 ;
DDSurfaces::Vector3D ubl( 0., 1., 0. ) ;
DDSurfaces::Vector3D vbl( 0., 0., 1. ) ;
if( isXZ ) {
ubl.fill( 1., 0., 0. ) ;
vbl.fill( 0., 0., 1. ) ;
uidx = 0 ;
vidx = 2 ;
} else if( isXY ) {
ubl.fill( 1., 0., 0. ) ;
vbl.fill( 0., 1., 0. ) ;
uidx = 0 ;
vidx = 1 ;
}
DDSurfaces::Vector3D ub ;
DDSurfaces::Vector3D vb ;
_wtM->LocalToMasterVect( ubl , ub.array() ) ;
_wtM->LocalToMasterVect( vbl , vb.array() ) ;
lines.push_back( std::make_pair( _o + boxDim[ uidx ] * ub + boxDim[ vidx ] * vb , _o - boxDim[ uidx ] * ub + boxDim[ vidx ] * vb ) ) ;
lines.push_back( std::make_pair( _o - boxDim[ uidx ] * ub + boxDim[ vidx ] * vb , _o - boxDim[ uidx ] * ub - boxDim[ vidx ] * vb ) ) ;
lines.push_back( std::make_pair( _o - boxDim[ uidx ] * ub - boxDim[ vidx ] * vb , _o + boxDim[ uidx ] * ub - boxDim[ vidx ] * vb ) ) ;
lines.push_back( std::make_pair( _o + boxDim[ uidx ] * ub - boxDim[ vidx ] * vb , _o + boxDim[ uidx ] * ub + boxDim[ vidx ] * vb ) ) ;
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
} else if( shape->IsA() == TGeoConeSeg::Class() ) {
TGeoCone* cone = ( TGeoCone* ) shape ;
// can only deal with special case of z-disk and origin in center of cone
if( type().isZDisk() && lo.rho() < epsilon ) {
double zhalf = cone->GetDZ() ;
double rmax1 = cone->GetRmax1() ;
double rmax2 = cone->GetRmax2() ;
double rmin1 = cone->GetRmin1() ;
double rmin2 = cone->GetRmin2() ;
// two circles around origin
// get radii at position of plane
double r0 = rmin1 + ( rmin2 - rmin1 ) / ( 2. * zhalf ) * ( zhalf + lo.z() ) ;
double r1 = rmax1 + ( rmax2 - rmax1 ) / ( 2. * zhalf ) * ( zhalf + lo.z() ) ;
unsigned n = nMax / 4 ;
double dPhi = 2.* ROOT::Math::Pi() / double( n ) ;
for( unsigned i = 0 ; i < n ; ++i ) {
Vector3D rv00( r0*sin( i *dPhi ) , r0*cos( i *dPhi ) , 0. ) ;
Vector3D rv01( r0*sin( (i+1)*dPhi ) , r0*cos( (i+1)*dPhi ) , 0. ) ;
Vector3D rv10( r1*sin( i *dPhi ) , r1*cos( i *dPhi ) , 0. ) ;
Vector3D rv11( r1*sin( (i+1)*dPhi ) , r1*cos( (i+1)*dPhi ) , 0. ) ;
Vector3D pl0 = lo + rv00 ;
Vector3D pl1 = lo + rv01 ;
Vector3D pl2 = lo + rv10 ;
Vector3D pl3 = lo + rv11 ;
Vector3D pg0,pg1,pg2,pg3 ;
_wtM->LocalToMaster( pl0, pg0.array() ) ;
_wtM->LocalToMaster( pl1, pg1.array() ) ;
_wtM->LocalToMaster( pl2, pg2.array() ) ;
_wtM->LocalToMaster( pl3, pg3.array() ) ;
lines.push_back( std::make_pair( pg0, pg1 ) ) ;
lines.push_back( std::make_pair( pg2, pg3 ) ) ;
}
//add some vertical and horizontal lines so that the disc is seen in the rho-z projection
n = 4 ; dPhi = 2.* ROOT::Math::Pi() / double( n ) ;
for( unsigned i = 0 ; i < n ; ++i ) {
Vector3D rv0( r0*sin( i * dPhi ) , r0*cos( i * dPhi ) , 0. ) ;
Vector3D rv1( r1*sin( i * dPhi ) , r1*cos( i * dPhi ) , 0. ) ;
Vector3D pl0 = lo + rv0 ;
Vector3D pl1 = lo + rv1 ;
Vector3D pg0,pg1 ;
_wtM->LocalToMaster( pl0, pg0.array() ) ;
_wtM->LocalToMaster( pl1, pg1.array() ) ;
lines.push_back( std::make_pair( pg0, pg1 ) ) ;
}
}
return lines ;
}
// ===== default for arbitrary planes in arbitrary shapes =================
// We create nMax vertices by rotating the local u vector around the normal
// and checking the distance to the volume boundary in that direction.
// This is brute force and not very smart, as many points are created on straight
// lines and the edges are still rounded.
// The alterative would be to compute the true intersections a plane and the most
// common shapes - at least for boxes that should be not too hard. To be done...
lines.reserve( nMax ) ;
double dAlpha = 2.* ROOT::Math::Pi() / double( nMax ) ;
TVector3 normal( ln.x() , ln.y() , ln.z() ) ;
DDSurfaces::Vector3D first, previous ;
for(unsigned i=0 ; i< nMax ; ++i ){
double alpha = double(i) * dAlpha ;
TVector3 vec( lu.x() , lu.y() , lu.z() ) ;
TRotation rot ;
rot.Rotate( alpha , normal );
TVector3 vecR = rot * vec ;
DDSurfaces::Vector3D luRot ;
luRot.fill( vecR ) ;
double dist = shape->DistFromInside( const_cast<double*> (lo.const_array()) , const_cast<double*> (luRot.const_array()) , 3, 0.1 ) ;
// local point at volume boundary
DDSurfaces::Vector3D lp = lo + dist * luRot ;
DDSurfaces::Vector3D gp ;
_wtM->LocalToMaster( lp , gp.array() ) ;
// std::cout << " **** normal:" << ln << " lu:" << lu << " alpha:" << alpha << " luRot:" << luRot << " lp :" << lp << " gp:" << gp << " dist : " << dist
// << " is point " << gp << " inside : " << shape->Contains( gp.const_array() )
// << " dist from outside for lo,lu " << shape->DistFromOutside( lo.const_array() , lu.const_array() , 3 )
// << " dist from inside for lo,ln " << shape->DistFromInside( lo.const_array() , ln.const_array() , 3 )
// << std::endl;
// shape->Dump() ;
lines.push_back( std::make_pair( previous, gp ) ) ;
else
first = gp ;
previous = gp ;
lines.push_back( std::make_pair( previous, first ) ) ;
// if( shape->IsA() == TGeoTube::Class() ) {
if( shape->IsA() == TGeoConeSeg::Class() ) {
lines.reserve( nMax ) ;
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
TGeoTube* tube = ( TGeoTube* ) shape ;
double zHalf = tube->GetDZ() ;
Vector3D zv( 0. , 0. , zHalf ) ;
double r = lo.rho() ;
unsigned n = nMax / 4 ;
double dPhi = 2.* ROOT::Math::Pi() / double( n ) ;
for( unsigned i = 0 ; i < n ; ++i ) {
Vector3D rv0( r*sin( i *dPhi ) , r*cos( i *dPhi ) , 0. ) ;
Vector3D rv1( r*sin( (i+1)*dPhi ) , r*cos( (i+1)*dPhi ) , 0. ) ;
// 4 points on local cylinder
Vector3D pl0 = zv + rv0 ;
Vector3D pl1 = zv + rv1 ;
Vector3D pl2 = -zv + rv1 ;
Vector3D pl3 = -zv + rv0 ;
Vector3D pg0,pg1,pg2,pg3 ;
_wtM->LocalToMaster( pl0, pg0.array() ) ;
_wtM->LocalToMaster( pl1, pg1.array() ) ;
_wtM->LocalToMaster( pl2, pg2.array() ) ;
_wtM->LocalToMaster( pl3, pg3.array() ) ;
lines.push_back( std::make_pair( pg0, pg1 ) ) ;
lines.push_back( std::make_pair( pg1, pg2 ) ) ;
lines.push_back( std::make_pair( pg2, pg3 ) ) ;
lines.push_back( std::make_pair( pg3, pg0 ) ) ;
//================================================================================================================
Vector3D CylinderSurface::u( const Vector3D& point ) const {
Vector3D lp , u ;
_wtM->MasterToLocal( point , lp.array() ) ;
const DDSurfaces::Vector3D& lu = _volSurf.u( lp ) ;
_wtM->LocalToMasterVect( lu , u.array() ) ;
return u ;
}
Vector3D CylinderSurface::v(const Vector3D& point ) const {
Vector3D lp , v ;
_wtM->MasterToLocal( point , lp.array() ) ;
const DDSurfaces::Vector3D& lv = _volSurf.v( lp ) ;
_wtM->LocalToMasterVect( lv , v.array() ) ;
return v ;
}
Vector3D CylinderSurface::normal(const Vector3D& point ) const {
Vector3D lp , n ;
_wtM->MasterToLocal( point , lp.array() ) ;
const DDSurfaces::Vector3D& ln = _volSurf.normal( lp ) ;
_wtM->LocalToMasterVect( ln , n.array() ) ;
return n ;
}
ISurface::Vector2D CylinderSurface::globalToLocal( const Vector3D& point) const {
Vector3D lp , n ;
_wtM->MasterToLocal( point , lp.array() ) ;
return _volSurf.globalToLocal( lp ) ;
}
Vector3D CylinderSurface::localToGlobal( const ISurface::Vector2D& point) const {
Vector3D lp = _volSurf.localToGlobal( point ) ;
Vector3D p ;
_wtM->LocalToMasterVect( lp , p.array() ) ;
return p ;
}
//================================================================================================================