Newer
Older
Markus Frank
committed
//==========================================================================
Markus Frank
committed
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
Markus Frank
committed
// All rights reserved.
Markus Frank
committed
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
Markus Frank
committed
// Author : M.Frank
//
//==========================================================================
Markus Frank
committed
// Framework include files
Markus Frank
committed
#include <DD4hep/Shapes.h>
#include <DD4hep/Volumes.h>
Markus Frank
committed
#include <DD4hep/Plugins.h>
Markus Frank
committed
#include <DD4hep/Printout.h>
Markus Frank
committed
#include <DD4hep/Detector.h>
Markus Frank
committed
#include <DD4hep/DD4hepUnits.h>
#include <DD4hep/PropertyTable.h>
Markus Frank
committed
#include <DD4hep/DetectorTools.h>
Markus Frank
committed
#include <DD4hep/detail/ShapesInterna.h>
#include <DD4hep/detail/ObjectsInterna.h>
#include <DD4hep/detail/DetectorInterna.h>
Markus Frank
committed
#include <DDG4/Geant4Field.h>
#include <DDG4/Geant4Helpers.h>
Markus Frank
committed
#include <DDG4/Geant4Converter.h>
#include <DDG4/Geant4UserLimits.h>
Markus Frank
committed
#include <DDG4/Geant4AssemblyVolume.h>
#include <DDG4/Geant4PlacementParameterisation.h>
#include "Geant4ShapeConverter.h"
#include <TClass.h>
Markus Frank
committed
#include <TGeoBoolNode.h>
Markus Frank
committed
#include <G4Version.hh>
#include <G4VisAttributes.hh>
#include <G4PVParameterised.hh>
Markus Frank
committed
#include <G4ProductionCuts.hh>
#include <G4VUserRegionInformation.hh>
Markus Frank
committed
#include <G4Box.hh>
#include <G4Tubs.hh>
#include <G4Ellipsoid.hh>
#include <G4UnionSolid.hh>
#include <G4ReflectedSolid.hh>
#include <G4SubtractionSolid.hh>
#include <G4IntersectionSolid.hh>
#include <G4VSensitiveDetector.hh>
Markus Frank
committed
#include <G4Region.hh>
#include <G4Element.hh>
#include <G4Isotope.hh>
#include <G4Material.hh>
#include <G4UserLimits.hh>
#include <G4RegionStore.hh>
Markus Frank
committed
#include <G4FieldManager.hh>
#include <G4LogicalVolume.hh>
#include <G4OpticalSurface.hh>
#include <G4ReflectionFactory.hh>
Markus Frank
committed
#include <G4LogicalSkinSurface.hh>
#include <G4ElectroMagneticField.hh>
#include <G4LogicalBorderSurface.hh>
#include <G4MaterialPropertiesTable.hh>
Markus Frank
committed
#include <G4MaterialPropertiesIndex.hh>
Markus Frank
committed
#include <G4ScaledSolid.hh>
#include <CLHEP/Units/SystemOfUnits.h>
Markus Frank
committed
// C/C++ include files
Markus Frank
committed
#include <iostream>
#include <iomanip>
#include <sstream>
Markus Frank
committed
namespace units = dd4hep;
using namespace dd4hep::sim;
using namespace dd4hep;
Markus Frank
committed
namespace {
Markus Frank
committed
static constexpr const double CM_2_MM = (CLHEP::centimeter/dd4hep::centimeter);
static constexpr const char* GEANT4_TAG_IGNORE = "Geant4-ignore";
static constexpr const char* GEANT4_TAG_PLUGIN = "Geant4-plugin";
static constexpr const char* GEANT4_TAG_BIRKSCONSTANT = "BirksConstant";
static constexpr const char* GEANT4_TAG_MEE = "MeanExcitationEnergy";
static constexpr const char* GEANT4_TAG_ENE_PER_ION_PAIR = "MeanEnergyPerIonPair";
Markus Frank
committed
static std::string indent = "";
Markus Frank
committed
template <typename O, typename C, typename F> void handleRefs(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
//(o->*pmf)((*i)->GetName(), *i);
(o->*pmf)("", *i);
}
}
template <typename O, typename C, typename F> void handle(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
(o->*pmf)((*i)->GetName(), *i);
}
}
template <typename O, typename F> void handleArray(const O* o, const TObjArray* c, F pmf) {
TObjArrayIter arr(c);
for(TObject* i = arr.Next(); i; i=arr.Next())
(o->*pmf)(i);
}
template <typename O, typename C, typename F> void handleMap(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i)
(o->*pmf)((*i).first, (*i).second);
}
template <typename O, typename C, typename F> void handleRMap(const O* o, const C& c, F pmf) {
for (typename C::const_reverse_iterator i = c.rbegin(); i != c.rend(); ++i) {
Markus Frank
committed
//cout << "Handle RMAP [ " << (*i).first << " ]" << std::endl;
Markus Frank
committed
handle(o, (*i).second, pmf);
}
}
template <typename O, typename C, typename F> void handleRMap_(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
const auto& cc = (*i).second;
for (const auto& j : cc) {
(o->*pmf)(j);
}
}
}
Markus Frank
committed
std::string make_NCName(const std::string& in) {
std::string res = detail::str_replace(in, "/", "_");
res = detail::str_replace(res, "#", "_");
return res;
}
bool is_left_handed(const TGeoMatrix* m) {
const Double_t* r = m->GetRotationMatrix();
if ( r ) {
Double_t det =
r[0]*r[4]*r[8] + r[3]*r[7]*r[2] + r[6]*r[1]*r[5] -
r[2]*r[4]*r[6] - r[5]*r[7]*r[0] - r[8]*r[1]*r[3];
return det < 0e0;
}
return false;
}
class G4UserRegionInformation : public G4VUserRegionInformation {
public:
Region region;
double threshold;
Markus Frank
committed
bool storeSecondaries;
Markus Frank
committed
: threshold(0.0), storeSecondaries(false) {
}
virtual ~G4UserRegionInformation() {
}
if (region.isValid())
printout(DEBUG, "Region", "Name:%s", region.name());
Markus Frank
committed
std::pair<double,double> g4PropertyConversion(int index) {
Markus Frank
committed
case kRINDEX: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kREFLECTIVITY: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kREALRINDEX: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kIMAGINARYRINDEX: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kEFFICIENCY: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kTRANSMITTANCE: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kSPECULARLOBECONSTANT: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kSPECULARSPIKECONSTANT: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kBACKSCATTERCONSTANT: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kGROUPVEL: return std::make_pair(CLHEP::keV/units::keV, (CLHEP::m/CLHEP::s)/(units::m/units::s)); // meter/second
case kMIEHG: return std::make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kRAYLEIGH: return std::make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m); // ??? says its a length
case kWLSCOMPONENT: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kWLSABSLENGTH: return std::make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kABSLENGTH: return std::make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
#if G4VERSION_NUMBER >= 1100
Markus Frank
committed
case kWLSCOMPONENT2: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kWLSABSLENGTH2: return std::make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kSCINTILLATIONCOMPONENT1: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kSCINTILLATIONCOMPONENT2: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kSCINTILLATIONCOMPONENT3: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
Markus Frank
committed
case kFASTCOMPONENT: return std::make_pair(CLHEP::keV/units::keV, 1.0);
case kSLOWCOMPONENT: return std::make_pair(CLHEP::keV/units::keV, 1.0);
Markus Frank
committed
case kPROTONSCINTILLATIONYIELD: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV); // Yields: 1/energy
case kDEUTERONSCINTILLATIONYIELD: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kTRITONSCINTILLATIONYIELD: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kALPHASCINTILLATIONYIELD: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kIONSCINTILLATIONYIELD: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kELECTRONSCINTILLATIONYIELD: return std::make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
default:
break;
}
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d", index);
#else
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d [Need Geant4 > 10.03]", index);
#endif
Markus Frank
committed
return std::make_pair(0e0,0e0);
}
double g4ConstPropertyConversion(int index) {
case kSURFACEROUGHNESS: return CLHEP::m/units::m; // Length
case kISOTHERMAL_COMPRESSIBILITY: return (CLHEP::m3/CLHEP::keV)/(units::m3/CLHEP::keV); // Volume/Energy
case kRS_SCALE_FACTOR: return 1.0; // ??
case kWLSMEANNUMBERPHOTONS: return 1.0; // ??
case kWLSTIMECONSTANT: return CLHEP::second/units::second; // Time
case kMIEHG_FORWARD: return 1.0;
case kMIEHG_BACKWARD: return 1.0;
case kMIEHG_FORWARD_RATIO: return 1.0;
case kSCINTILLATIONYIELD: return units::keV/CLHEP::keV; // Energy
case kRESOLUTIONSCALE: return 1.0;
case kFERMIPOT: return CLHEP::keV/units::keV; // Energy
case kDIFFUSION: return 1.0;
case kSPINFLIP: return 1.0;
case kLOSS: return 1.0; // ??
case kLOSSCS: return CLHEP::barn/units::barn; // ??
case kABSCS: return CLHEP::barn/units::barn; // ??
case kSCATCS: return CLHEP::barn/units::barn; // ??
case kMR_NBTHETA: return 1.0;
case kMR_NBE: return 1.0;
case kMR_RRMS: return 1.0; // ??
case kMR_CORRLEN: return CLHEP::m/units::m; // Length
case kMR_THETAMIN: return 1.0;
case kMR_THETAMAX: return 1.0;
case kMR_EMIN: return CLHEP::keV/units::keV; // Energy
case kMR_EMAX: return CLHEP::keV/units::keV; // Energy
case kMR_ANGNOTHETA: return 1.0;
case kMR_ANGNOPHI: return 1.0;
case kMR_ANGCUT: return 1.0;
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#if G4VERSION_NUMBER >= 1100
case kSCINTILLATIONTIMECONSTANT1: return CLHEP::second/units::second; // Time
case kSCINTILLATIONTIMECONSTANT2: return CLHEP::second/units::second; // Time
case kSCINTILLATIONTIMECONSTANT3: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME1: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME2: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME3: return CLHEP::second/units::second; // Time
case kSCINTILLATIONYIELD1: return 1.0;
case kSCINTILLATIONYIELD2: return 1.0;
case kSCINTILLATIONYIELD3: return 1.0;
case kPROTONSCINTILLATIONYIELD1: return 1.0;
case kPROTONSCINTILLATIONYIELD2: return 1.0;
case kPROTONSCINTILLATIONYIELD3: return 1.0;
case kDEUTERONSCINTILLATIONYIELD1: return 1.0;
case kDEUTERONSCINTILLATIONYIELD2: return 1.0;
case kDEUTERONSCINTILLATIONYIELD3: return 1.0;
case kALPHASCINTILLATIONYIELD1: return 1.0;
case kALPHASCINTILLATIONYIELD2: return 1.0;
case kALPHASCINTILLATIONYIELD3: return 1.0;
case kIONSCINTILLATIONYIELD1: return 1.0;
case kIONSCINTILLATIONYIELD2: return 1.0;
case kIONSCINTILLATIONYIELD3: return 1.0;
case kELECTRONSCINTILLATIONYIELD1: return 1.0;
case kELECTRONSCINTILLATIONYIELD2: return 1.0;
case kELECTRONSCINTILLATIONYIELD3: return 1.0;
#else
case kFASTTIMECONSTANT: return CLHEP::second/units::second; // Time
case kFASTSCINTILLATIONRISETIME: return CLHEP::second/units::second; // Time
case kSLOWTIMECONSTANT: return CLHEP::second/units::second; // Time
case kSLOWSCINTILLATIONRISETIME: return CLHEP::second/units::second; // Time
case kYIELDRATIO: return 1.0;
#endif
default:
break;
}
printout(FATAL,"Geant4Converter", "+++ Cannot convert CONST material property with index: %d", index);
#else
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d [Need Geant4 > 10.03]", index);
#endif
Geant4Converter::Geant4Converter(const Detector& description_ref)
: Geant4Mapping(description_ref), checkOverlaps(true) {
this->Geant4Mapping::init();
Markus Frank
committed
m_propagateRegions = true;
Markus Frank
committed
outputLevel = PrintLevel(printLevel() - 1);
Geant4Converter::Geant4Converter(const Detector& description_ref, PrintLevel level)
: Geant4Mapping(description_ref), outputLevel(level) {
Markus Frank
committed
m_propagateRegions = true;
Markus Frank
committed
/// Standard destructor
Geant4Converter::~Geant4Converter() {
Markus Frank
committed
/// Handle the conversion of isotopes
Markus Frank
committed
void* Geant4Converter::handleIsotope(const std::string& /* name */, const TGeoIsotope* iso) const {
G4Isotope* g4i = data().g4Isotopes[iso];
double a_conv = (CLHEP::g / CLHEP::mole);
g4i = new G4Isotope(iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA()*a_conv);
printout(debugElements ? ALWAYS : outputLevel,
"Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA());
data().g4Isotopes[iso] = g4i;
}
return g4i;
}
/// Handle the conversion of elements
Markus Frank
committed
void* Geant4Converter::handleElement(const std::string& name, const Atom element) const {
G4Element* g4e = data().g4Elements[element];
PrintLevel lvl = debugElements ? ALWAYS : outputLevel;
if (element->GetNisotopes() > 0) {
g4e = new G4Element(name, element->GetTitle(), element->GetNisotopes());
for (int i = 0, n = element->GetNisotopes(); i < n; ++i) {
TGeoIsotope* iso = element->GetIsotope(i);
G4Isotope* g4iso = (G4Isotope*)handleIsotope(iso->GetName(), iso);
g4e->AddIsotope(g4iso, element->GetRelativeAbundance(i));
else {
// This adds in Geant4 the natural isotopes, which we normally do not want. We want to steer it outselves.
double a_conv = (CLHEP::g / CLHEP::mole);
g4e = new G4Element(element->GetTitle(), name, element->Z(), element->A()*a_conv);
printout(lvl, "Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
element->GetName(), element->Z(), element->N(), element->A());
}
Markus Frank
committed
std::stringstream str;
str << (*g4e) << std::endl;
printout(lvl, "Geant4Converter", "++ Created G4 element %s", str.str().c_str());
data().g4Elements[element] = g4e;
}
return g4e;
}
/// Dump material in GDML format to output stream
Markus Frank
committed
void* Geant4Converter::handleMaterial(const std::string& name, Material medium) const {
Geant4GeometryInfo& info = data();
G4Material* mat = info.g4Materials[medium];
if ( !mat ) {
PrintLevel lvl = debugMaterials ? ALWAYS : outputLevel;
TGeoMaterial* material = medium->GetMaterial();
G4State state = kStateUndefined;
double density = material->GetDensity() * (CLHEP::gram / CLHEP::cm3);
if ( density < 1e-25 )
switch ( material->GetState() ) {
case TGeoMaterial::kMatStateSolid:
state = kStateSolid;
break;
case TGeoMaterial::kMatStateLiquid:
state = kStateLiquid;
break;
case TGeoMaterial::kMatStateGas:
state = kStateGas;
break;
default:
case TGeoMaterial::kMatStateUndefined:
state = kStateUndefined;
break;
}
Markus Frank
committed
printout(lvl,"Geant4Material","+++ Setting up material %s", name.c_str());
if ( material->IsMixture() ) {
double A_total = 0.0;
double W_total = 0.0;
TGeoMixture* mix = (TGeoMixture*) material;
int nElements = mix->GetNelements();
mat = new G4Material(name, density, nElements, state,
material->GetTemperature(), material->GetPressure());
for (int i = 0; i < nElements; ++i) {
A_total += (mix->GetAmixt())[i];
W_total += (mix->GetWmixt())[i];
for (int i = 0; i < nElements; ++i) {
TGeoElement* e = mix->GetElement(i);
G4Element* g4e = (G4Element*) handleElement(e->GetName(), Atom(e));
if (!g4e) {
Markus Frank
committed
printout(ERROR, name,
"Missing element component %s for material %s. A=%f W=%f",
e->GetName(), mix->GetName(), A_total, W_total);
Markus Frank
committed
}
//mat->AddElement(g4e, (mix->GetAmixt())[i] / A_total);
mat->AddElement(g4e, (mix->GetWmixt())[i] / W_total);
}
else {
double z = material->GetZ(), a = material->GetA();
if ( z < 1.0000001 ) z = 1.0;
if ( a < 0.5000001 ) a = 1.0;
mat = new G4Material(name, z, a, density, state,
material->GetTemperature(), material->GetPressure());
}
Markus Frank
committed
std::string plugin_name { };
Markus Frank
committed
double value = 0e0;
double ionisation_mee = -2e100;
double ionisation_birks_constant = -2e100;
double ionisation_ene_per_ion_pair = -2e100;
/// Attach the material properties if any
G4MaterialPropertiesTable* tab = 0;
TListIter propIt(&material->GetProperties());
for(TObject* obj=propIt.Next(); obj; obj = propIt.Next()) {
Markus Frank
committed
std::string exc_str;
TNamed* named = (TNamed*)obj;
TGDMLMatrix* matrix = info.manager->GetGDMLMatrix(named->GetTitle());
const char* cptr = ::strstr(matrix->GetName(), GEANT4_TAG_IGNORE);
Markus Frank
committed
printout(INFO,name,"++ Ignore property %s [%s]. Not Suitable for Geant4.",
matrix->GetName(), matrix->GetTitle());
continue;
}
cptr = ::strstr(matrix->GetTitle(), GEANT4_TAG_IGNORE);
Markus Frank
committed
printout(INFO,name,"++ Ignore property %s [%s]. Not Suitable for Geant4.",
matrix->GetName(), matrix->GetTitle());
continue;
Geant4GeometryInfo::PropertyVector* v =
(Geant4GeometryInfo::PropertyVector*)handleMaterialProperties(matrix);
except("Geant4Converter", "++ FAILED to create G4 material %s [Cannot convert property:%s]",
material->GetName(), named->GetName());
tab = new G4MaterialPropertiesTable();
mat->SetMaterialPropertiesTable(tab);
Markus Frank
committed
int idx = -1;
try {
idx = tab->GetPropertyIndex(named->GetName());
}
catch(const std::exception& e) {
exc_str = e.what();
idx = -1;
}
catch(...) {
idx = -1;
}
Markus Frank
committed
printout(ERROR, "Geant4Converter",
Markus Frank
committed
"++ UNKNOWN Geant4 Property: %-20s %s [IGNORED]",
Markus Frank
committed
exc_str.c_str(), named->GetName());
continue;
}
// We need to convert the property from TGeo units to Geant4 units
auto conv = g4PropertyConversion(idx);
Markus Frank
committed
std::vector<double> bins(v->bins), vals(v->values);
for(std::size_t i=0, count=bins.size(); i<count; ++i)
bins[i] *= conv.first, vals[i] *= conv.second;
G4MaterialPropertyVector* vec =
Markus Frank
committed
new G4MaterialPropertyVector(&bins[0], &vals[0], bins.size());
tab->AddProperty(named->GetName(), vec);
Markus Frank
committed
printout(lvl, name, "++ Property: %-20s [%ld x %ld] -> %s ",
named->GetName(), matrix->GetRows(), matrix->GetCols(), named->GetTitle());
for(std::size_t i=0, count=v->bins.size(); i<count; ++i)
Markus Frank
committed
printout(lvl, name, " Geant4: %s %8.3g [MeV] TGeo: %8.3g [GeV] Conversion: %8.3g",
named->GetName(), bins[i], v->bins[i], conv.first);
/// Attach the material properties if any
TListIter cpropIt(&material->GetConstProperties());
for(TObject* obj=cpropIt.Next(); obj; obj = cpropIt.Next()) {
Markus Frank
committed
std::string exc_str;
Bool_t err = kFALSE;
TNamed* named = (TNamed*)obj;
const char* cptr = ::strstr(named->GetName(), GEANT4_TAG_IGNORE);
Markus Frank
committed
printout(INFO, name, "++ Ignore CONST property %s [%s].",
named->GetName(), named->GetTitle());
continue;
}
cptr = ::strstr(named->GetTitle(), GEANT4_TAG_IGNORE);
Markus Frank
committed
printout(INFO, name,"++ Ignore CONST property %s [%s].",
named->GetName(), named->GetTitle());
continue;
cptr = ::strstr(named->GetName(), GEANT4_TAG_PLUGIN);
printout(INFO, name, "++ Ignore CONST property %s [%s] --> Plugin.",
named->GetName(), named->GetTitle());
Markus Frank
committed
plugin_name = named->GetTitle();
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_BIRKSCONSTANT);
Markus Frank
committed
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_BIRKSCONSTANT,&err);
if ( err == kFALSE ) ionisation_birks_constant = value * (CLHEP::mm/CLHEP::MeV)/(units::mm/units::MeV);
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_MEE);
Markus Frank
committed
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_MEE, &err);
if ( err == kFALSE ) ionisation_mee = value * (CLHEP::MeV/units::MeV);
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_ENE_PER_ION_PAIR);
Markus Frank
committed
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_ENE_PER_ION_PAIR,&err);
if ( err == kFALSE ) ionisation_ene_per_ion_pair = value * (CLHEP::MeV/units::MeV);
continue;
}
err = kFALSE;
Markus Frank
committed
value = info.manager->GetProperty(named->GetTitle(), &err);
Markus Frank
committed
except(name,
"++ FAILED to create G4 material %s [Cannot convert const property: %s]",
material->GetName(), named->GetName());
}
tab = new G4MaterialPropertiesTable();
mat->SetMaterialPropertiesTable(tab);
}
Markus Frank
committed
int idx = -1;
try {
idx = tab->GetConstPropertyIndex(named->GetName());
Markus Frank
committed
}
catch(const std::exception& e) {
exc_str = e.what();
idx = -1;
}
catch(...) {
idx = -1;
}
Markus Frank
committed
printout(ERROR, name,
Markus Frank
committed
"++ UNKNOWN Geant4 CONST Property: %-20s %s [IGNORED]",
exc_str.c_str(), named->GetName());
continue;
}
// We need to convert the property from TGeo units to Geant4 units
double conv = g4ConstPropertyConversion(idx);
printout(lvl, name, "++ CONST Property: %-20s %g ", named->GetName(), value);
tab->AddConstProperty(named->GetName(), value * conv);
Markus Frank
committed
//
// Set Birk's constant if it was supplied in the material table of the TGeoMaterial
auto* ionisation = mat->GetIonisation();
Markus Frank
committed
std::stringstream str;
str << (*mat);
if ( ionisation ) {
if ( ionisation_birks_constant > 0e0 ) {
Markus Frank
committed
ionisation->SetBirksConstant(ionisation_birks_constant);
}
if ( ionisation_mee > -1e100 ) {
Markus Frank
committed
ionisation->SetMeanExcitationEnergy(ionisation_mee);
}
if ( ionisation_ene_per_ion_pair > 0e0 ) {
Markus Frank
committed
ionisation->SetMeanEnergyPerIonPair(ionisation_ene_per_ion_pair);
}
str << " log(MEE): " << std::setprecision(4) << ionisation->GetLogMeanExcEnergy();
if ( ionisation_birks_constant > 0e0 )
Markus Frank
committed
str << " Birk's constant: " << std::setprecision(4) << ionisation->GetBirksConstant() << " [mm/MeV]";
if ( ionisation_ene_per_ion_pair > 0e0 )
Markus Frank
committed
str << " Mean Energy Per Ion Pair: " << std::setprecision(4) << ionisation->GetMeanEnergyPerIonPair()/CLHEP::eV << " [eV]";
}
else {
str << " No ionisation parameters availible.";
}
Markus Frank
committed
printout(lvl, name, "++ Created G4 material %s", str.str().c_str());
if ( !plugin_name.empty() ) {
// Call plugin to create extended material if requested
Detector* det = const_cast<Detector*>(&m_detDesc);
G4Material* extended_mat = PluginService::Create<G4Material*>(plugin_name, det, medium, mat);
if ( !extended_mat ) {
Markus Frank
committed
except("G4Cnv::material["+name+"]","++ FATAL Failed to call plugin to create material.");
}
mat = extended_mat;
}
info.g4Materials[medium] = mat;
Markus Frank
committed
void* Geant4Converter::handleSolid(const std::string& name, const TGeoShape* shape) const {
G4VSolid* solid = nullptr;
if ( shape ) {
if ( nullptr != (solid = data().g4Solids[shape]) ) {
Markus Frank
committed
return solid;
}
TClass* isa = shape->IsA();
PrintLevel lvl = debugShapes ? ALWAYS : outputLevel;
if (isa == TGeoShapeAssembly::Class()) {
// Assemblies have no corresponding 'shape' in Geant4. Ignore the shape translation.
// It does not harm, since this 'shape' is never accessed afterwards.
data().g4Solids[shape] = solid = convertShape<TGeoShapeAssembly>(shape);
return solid;
Markus Frank
committed
}
else if (isa == TGeoBBox::Class())
solid = convertShape<TGeoBBox>(shape);
else if (isa == TGeoTube::Class())
solid = convertShape<TGeoTube>(shape);
else if (isa == TGeoTubeSeg::Class())
solid = convertShape<TGeoTubeSeg>(shape);
else if (isa == TGeoCtub::Class())
solid = convertShape<TGeoCtub>(shape);
else if (isa == TGeoEltu::Class())
solid = convertShape<TGeoEltu>(shape);
else if (isa == TwistedTubeObject::Class())
solid = convertShape<TwistedTubeObject>(shape);
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
else if (isa == TGeoTrd1::Class())
solid = convertShape<TGeoTrd1>(shape);
else if (isa == TGeoTrd2::Class())
solid = convertShape<TGeoTrd2>(shape);
else if (isa == TGeoHype::Class())
solid = convertShape<TGeoHype>(shape);
else if (isa == TGeoXtru::Class())
solid = convertShape<TGeoXtru>(shape);
else if (isa == TGeoPgon::Class())
solid = convertShape<TGeoPgon>(shape);
else if (isa == TGeoPcon::Class())
solid = convertShape<TGeoPcon>(shape);
else if (isa == TGeoCone::Class())
solid = convertShape<TGeoCone>(shape);
else if (isa == TGeoConeSeg::Class())
solid = convertShape<TGeoConeSeg>(shape);
else if (isa == TGeoParaboloid::Class())
solid = convertShape<TGeoParaboloid>(shape);
else if (isa == TGeoSphere::Class())
solid = convertShape<TGeoSphere>(shape);
else if (isa == TGeoTorus::Class())
solid = convertShape<TGeoTorus>(shape);
else if (isa == TGeoTrap::Class())
solid = convertShape<TGeoTrap>(shape);
else if (isa == TGeoArb8::Class())
solid = convertShape<TGeoArb8>(shape);
else if (isa == TGeoPara::Class())
solid = convertShape<TGeoPara>(shape);
else if (isa == TGeoTessellated::Class())
solid = convertShape<TGeoTessellated>(shape);
else if (isa == TGeoScaledShape::Class()) {
TGeoScaledShape* sh = (TGeoScaledShape*) shape;
if ( sol->IsA() == TGeoShapeAssembly::Class() ) {
Markus Frank
committed
return solid;
const double* vals = sh->GetScale()->GetScale();
G4Scale3D scal(vals[0], vals[1], vals[2]);
G4VSolid* g4solid = (G4VSolid*)handleSolid(sol->GetName(), sol);
if ( scal.xx()>0e0 && scal.yy()>0e0 && scal.zz()>0e0 )
Markus Frank
committed
solid = new G4ScaledSolid(sh->GetName(), g4solid, scal);
Markus Frank
committed
solid = new G4ReflectedSolid(g4solid->GetName()+"_refl", g4solid, scal);
}
else if ( isa == TGeoCompositeShape::Class() ) {
const TGeoCompositeShape* sh = (const TGeoCompositeShape*) shape;
const TGeoBoolNode* boolean = sh->GetBoolNode();
TGeoBoolNode::EGeoBoolType oper = boolean->GetBooleanOperator();
TGeoMatrix* matrix = boolean->GetRightMatrix();
G4VSolid* left = (G4VSolid*) handleSolid(name + "_left", boolean->GetLeftShape());
G4VSolid* right = (G4VSolid*) handleSolid(name + "_right", boolean->GetRightShape());
except("Geant4Converter","++ No left Geant4 Solid present for composite shape: %s",name.c_str());
except("Geant4Converter","++ No right Geant4 Solid present for composite shape: %s",name.c_str());
TGeoShape* ls = boolean->GetLeftShape();
TGeoShape* rs = boolean->GetRightShape();
if (strcmp(ls->ClassName(), "TGeoScaledShape") == 0 &&
Markus Frank
committed
strcmp(rs->ClassName(), "TGeoBBox") == 0) {
if (strcmp(((TGeoScaledShape *)ls)->GetShape()->ClassName(), "TGeoSphere") == 0) {
if (oper == TGeoBoolNode::kGeoIntersection) {
TGeoScaledShape* lls = (TGeoScaledShape *)ls;
TGeoBBox* rrs = (TGeoBBox*)rs;
Markus Frank
committed
double sx = lls->GetScale()->GetScale()[0];
double sy = lls->GetScale()->GetScale()[1];
Markus Frank
committed
double radius = ((TGeoSphere *)lls->GetShape())->GetRmax();
Markus Frank
committed
double dz = rrs->GetDZ();
double zorig = rrs->GetOrigin()[2];
double zcut2 = dz + zorig;
double zcut1 = 2 * zorig - zcut2;
Markus Frank
committed
solid = new G4Ellipsoid(name,
sx * radius * CM_2_MM,
sy * radius * CM_2_MM,
radius * CM_2_MM,
zcut1 * CM_2_MM,
zcut2 * CM_2_MM);
data().g4Solids[shape] = solid;
return solid;
}
}
if ( matrix->IsRotation() ) {
G4Transform3D transform;
Markus Frank
committed
g4Transform(matrix, transform);
if (oper == TGeoBoolNode::kGeoSubtraction)
solid = new G4SubtractionSolid(name, left, right, transform);
else if (oper == TGeoBoolNode::kGeoUnion)
solid = new G4UnionSolid(name, left, right, transform);
else if (oper == TGeoBoolNode::kGeoIntersection)
solid = new G4IntersectionSolid(name, left, right, transform);
const Double_t *t = matrix->GetTranslation();
G4ThreeVector transform(t[0] * CM_2_MM, t[1] * CM_2_MM, t[2] * CM_2_MM);
if (oper == TGeoBoolNode::kGeoSubtraction)
solid = new G4SubtractionSolid(name, left, right, 0, transform);
else if (oper == TGeoBoolNode::kGeoUnion)
solid = new G4UnionSolid(name, left, right, 0, transform);
else if (oper == TGeoBoolNode::kGeoIntersection)
solid = new G4IntersectionSolid(name, left, right, 0, transform);
except("Geant4Converter","++ Failed to handle unknown solid shape: %s of type %s",
name.c_str(), isa->GetName());
printout(lvl,"Geant4Converter","++ Successessfully converted shape [%p] of type:%s to %s.",
solid,isa->GetName(),typeName(typeid(*solid)).c_str());
data().g4Solids[shape] = solid;
}
return solid;
}
/// Dump logical volume in GDML format to output stream
Markus Frank
committed
void* Geant4Converter::handleVolume(const std::string& name, const TGeoVolume* volume) const {
Volume _v(volume);
Geant4GeometryInfo& info = data();
PrintLevel lvl = debugVolumes ? ALWAYS : outputLevel;
Markus Frank
committed
Geant4GeometryMaps::VolumeMap::const_iterator volIt = info.g4Volumes.find(volume);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ Volume %s not converted [Veto'ed for simulation]",volume->GetName());
return nullptr;
}
else if (volIt == info.g4Volumes.end() ) {
const char* vnam = volume->GetName();
TGeoMedium* med = volume->GetMedium();
Solid sh = volume->GetShape();
bool is_assembly = sh->IsA() == TGeoShapeAssembly::Class() || volume->IsAssembly();
printout(lvl, "Geant4Converter", "++ Convert Volume %-32s: %p %s/%s assembly:%s",
vnam, volume, sh.type(), _v.type(), yes_no(is_assembly));
if ( is_assembly ) {
return nullptr;
}
Region reg = _v.region();
LimitSet lim = _v.limitSet();
VisAttr vis = _v.visAttributes();
G4Region* g4region = reg.isValid() ? info.g4Regions[reg] : nullptr;
G4UserLimits* g4limits = lim.isValid() ? info.g4Limits[lim] : nullptr;
G4VSolid* g4solid = (G4VSolid*) handleSolid(sh->GetName(), sh);
G4Material* g4medium = (G4Material*) handleMaterial(med->GetName(), Material(med));
/// Check all pre-conditions
if ( !g4solid ) {
except("G4Converter","++ No Geant4 Solid present for volume: %s", vnam);
Markus Frank
committed
}
else if ( !g4medium ) {
except("G4Converter","++ No Geant4 material present for volume: %s", vnam);
Markus Frank
committed
}
else if ( reg.isValid() && !g4region ) {
except("G4Cnv::volume["+name+"]"," ++ Failed to access Geant4 region %s.", reg.name());
Markus Frank
committed
}
else if ( lim.isValid() && !g4limits ) {
except("G4Cnv::volume["+name+"]","++ FATAL Failed to access Geant4 user limits %s.", lim.name());
else if ( g4limits ) {
printout(lvl, "Geant4Converter", "++ Volume + Apply LIMITS settings: %-24s to volume %s.",
lim.name(), vnam);
Markus Frank
committed
}
G4LogicalVolume* g4vol = nullptr;
if ( _v.hasProperties() && !_v.getProperty(GEANT4_TAG_PLUGIN,"").empty() ) {
Detector* det = const_cast<Detector*>(&m_detDesc);
Markus Frank
committed
std::string plugin = _v.getProperty(GEANT4_TAG_PLUGIN,"");
g4vol = PluginService::Create<G4LogicalVolume*>(plugin, det, _v, g4solid, g4medium);
if ( !g4vol ) {
Markus Frank
committed
except("G4Cnv::volume["+name+"]","++ FATAL Failed to call plugin to create logical volume.");
}
}
else {
g4vol = new G4LogicalVolume(g4solid, g4medium, vnam, nullptr, nullptr, nullptr);
}
if ( g4limits ) {
g4vol->SetUserLimits(g4limits);
}
if ( g4region ) {
PrintLevel plevel = (debugVolumes||debugRegions||debugLimits) ? ALWAYS : outputLevel;
printout(plevel, "Geant4Converter", "++ Volume + Apply REGION settings: %-24s to volume %s.",
Markus Frank
committed
reg.name(), vnam);
// Handle the region settings for the world volume seperately.
// Geant4 does NOT WANT any regions assigned to the workd volume.
// The world's region is created in the G4RunManagerKernel!
if ( _v == m_detDesc.worldVolume() ) {
Markus Frank
committed
const char* wrd_nam = "DefaultRegionForTheWorld";
const char* src_nam = g4region->GetName().c_str();
auto* world_region = G4RegionStore::GetInstance()->GetRegion(wrd_nam, false);
if ( auto* cuts = g4region->GetProductionCuts() ) {
world_region->SetProductionCuts(cuts);
printout(plevel, "Geant4Converter",
"++ Volume %s Region: %s. Apply production cuts from %s",
vnam, wrd_nam, src_nam);
}
if ( auto* lims = g4region->GetUserLimits() ) {
world_region->SetUserLimits(lims);
printout(plevel, "Geant4Converter",
"++ Volume %s Region: %s. Apply user limits from %s",
vnam, wrd_nam, src_nam);
}
Markus Frank
committed
g4vol->SetRegion(g4region);
g4region->AddRootLogicalVolume(g4vol);
G4VisAttributes* g4vattr = vis.isValid()
? (G4VisAttributes*)handleVis(vis.name(), vis) : nullptr;
if ( g4vattr ) {
g4vol->SetVisAttributes(g4vattr);
Markus Frank
committed
}
info.g4Volumes[volume] = g4vol;
printout(lvl, "Geant4Converter",
Markus Frank
committed
"++ Volume + %s converted: %p ---> G4: %p", vnam, volume, g4vol);
return nullptr;
/// Dump logical volume in GDML format to output stream
Markus Frank
committed
void* Geant4Converter::collectVolume(const std::string& /* name */, const TGeoVolume* volume) const {
Geant4GeometryInfo& info = data();
Volume _v(volume);
Region reg = _v.region();
LimitSet lim = _v.limitSet();
SensitiveDetector det = _v.sensitiveDetector();
bool world = (volume == m_detDesc.worldVolume().ptr());
if ( !world ) {
if ( lim.isValid() )
info.limits[lim].insert(volume);
if ( reg.isValid() )
info.regions[reg].insert(volume);
if ( det.isValid() )
info.sensitives[det].insert(volume);
}
return (void*)volume;
/// Dump volume placement in GDML format to output stream
Markus Frank
committed
void* Geant4Converter::handleAssembly(const std::string& name, const TGeoNode* node) const {
TGeoVolume* mot_vol = node->GetVolume();
PrintLevel lvl = debugVolumes ? ALWAYS : outputLevel;
if ( mot_vol->IsA() != TGeoVolumeAssembly::Class() ) {
return nullptr;
Volume _v(mot_vol);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ AssemblyNode %s not converted [Veto'ed for simulation]",node->GetName());
return nullptr;
Geant4GeometryInfo& info = data();
Geant4AssemblyVolume* g4 = info.g4AssemblyVolumes[node];
if ( g4 ) {
printout(ALWAYS, "Geant4Converter", "+++ Assembly: **** : Re-using existing assembly: %s",node->GetName());
}
if ( !g4 ) {
g4 = new Geant4AssemblyVolume();
for(Int_t i=0; i < mot_vol->GetNdaughters(); ++i) {
TGeoNode* dau = mot_vol->GetNode(i);
TGeoVolume* dau_vol = dau->GetVolume();
TGeoMatrix* tr = dau->GetMatrix();
G4Transform3D transform;
g4Transform(tr, transform);
if ( is_left_handed(tr) ) {
Markus Frank
committed
G4Scale3D scale;
G4Rotate3D rot;
G4Translate3D trans;
transform.getDecomposition(scale, rot, trans);
printout(debugReflections ? ALWAYS : lvl, "Geant4Converter",
"++ Placing reflected ASSEMBLY. dau:%s to mother %s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz(),
Markus Frank
committed
scale.xx(), scale.yy(), scale.zz());
if ( dau_vol->IsA() == TGeoVolumeAssembly::Class() ) {
Geant4GeometryMaps::AssemblyMap::iterator ia = info.g4AssemblyVolumes.find(dau);
if ( ia == info.g4AssemblyVolumes.end() ) {
Markus Frank
committed
printout(FATAL, "Geant4Converter", "+++ Invalid child assembly at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
return nullptr;
Markus Frank
committed
}
g4->placeAssembly(dau, (*ia).second, transform);
printout(lvl, "Geant4Converter", "+++ Assembly: AddPlacedAssembly : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
Geant4GeometryMaps::VolumeMap::iterator iv = info.g4Volumes.find(dau_vol);
if ( iv == info.g4Volumes.end() ) {
printout(FATAL,"Geant4Converter", "+++ Invalid child volume at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
except("Geant4Converter", "+++ Invalid child volume at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
Markus Frank
committed
}
g4->placeVolume(dau,(*iv).second, transform);
printout(lvl, "Geant4Converter", "+++ Assembly: AddPlacedVolume : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
info.g4AssemblyVolumes[node] = g4;
/// Dump volume placement in GDML format to output stream
Markus Frank
committed
void* Geant4Converter::handlePlacement(const std::string& name, const TGeoNode* node) const {
Geant4GeometryInfo& info = data();
PrintLevel lvl = debugPlacements ? ALWAYS : outputLevel;
Markus Frank
committed
Geant4GeometryMaps::PlacementMap::const_iterator g4it = info.g4Placements.find(node);
G4VPhysicalVolume* g4 = (g4it == info.g4Placements.end()) ? 0 : (*g4it).second;
TGeoVolume* vol = node->GetVolume();
Volume _v(vol);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ Placement %s not converted [Veto'ed for simulation]",node->GetName());
return nullptr;
TGeoVolume* mot_vol = node->GetMotherVolume();
TGeoMatrix* tr = node->GetMatrix();
except("Geant4Converter",
Markus Frank
committed
"++ Attempt to handle placement without transformation:%p %s of type %s vol:%p",
node, node->GetName(), node->IsA()->GetName(), vol);
else if (nullptr == vol) {
except("Geant4Converter", "++ Unknown G4 volume:%p %s of type %s ptr:%p",
Markus Frank
committed
node, node->GetName(), node->IsA()->GetName(), vol);
int copy = node->GetNumber();
bool node_is_reflected = is_left_handed(tr);
bool node_is_assembly = vol->IsA() == TGeoVolumeAssembly::Class();
bool mother_is_assembly = mot_vol ? mot_vol->IsA() == TGeoVolumeAssembly::Class() : false;
G4Transform3D transform;
Markus Frank
committed
Geant4GeometryMaps::VolumeMap::const_iterator volIt = info.g4Volumes.find(mot_vol);
g4Transform(tr, transform);
if ( mother_is_assembly ) {
Markus Frank
committed
//
// Mother is an assembly:
// Nothing to do here, because:
// -- placed volumes were already added before in "handleAssembly"
// -- imprint cannot be made, because this requires a logical volume as a mother
//
printout(lvl, "Geant4Converter", "+++ Assembly: **** : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
Markus Frank
committed
}
G4Scale3D scale;
G4Rotate3D rot;
G4Translate3D trans;
transform.getDecomposition(scale, rot, trans);
if ( node_is_assembly ) {
Markus Frank
committed
//
// Node is an assembly:
// Imprint the assembly. The mother MUST already be transformed.
//
printout(lvl, "Geant4Converter", "++ Assembly: makeImprint: dau:%-12s %s in mother %-12s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
node->GetName(), node_is_reflected ? "(REFLECTED)" : "",
Markus Frank
committed
mot_vol ? mot_vol->GetName() : "<unknown>",
transform.dx(), transform.dy(), transform.dz(),
Markus Frank
committed
scale.xx(), scale.yy(), scale.zz());
Markus Frank
committed
Geant4AssemblyVolume* ass = (Geant4AssemblyVolume*)info.g4AssemblyVolumes[node];
Geant4AssemblyVolume::Chain chain;