Newer
Older
Markus Frank
committed
//==========================================================================
Markus Frank
committed
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
Markus Frank
committed
// All rights reserved.
Markus Frank
committed
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
Markus Frank
committed
// Author : M.Frank
//
//==========================================================================
Markus Frank
committed
// Framework include files
Markus Frank
committed
#include <DD4hep/Detector.h>
#include <DD4hep/Plugins.h>
#include <DD4hep/Shapes.h>
#include <DD4hep/Volumes.h>
#include <DD4hep/Printout.h>
#include <DD4hep/DD4hepUnits.h>
#include <DD4hep/PropertyTable.h>
#include <DD4hep/detail/ShapesInterna.h>
#include <DD4hep/detail/ObjectsInterna.h>
#include <DD4hep/detail/DetectorInterna.h>
Markus Frank
committed
#include <DDG4/Geant4Field.h>
#include <DDG4/Geant4Helpers.h>
Markus Frank
committed
#include <DDG4/Geant4Converter.h>
#include <DDG4/Geant4UserLimits.h>
#include <DDG4/Geant4PlacementParameterisation.h>
#include "Geant4ShapeConverter.h"
#include <TClass.h>
Markus Frank
committed
#include <TGeoBoolNode.h>
Markus Frank
committed
#include <G4Version.hh>
#include <G4VisAttributes.hh>
#include <G4PVParameterised.hh>
Markus Frank
committed
#include <G4ProductionCuts.hh>
#include <G4VUserRegionInformation.hh>
Markus Frank
committed
#include <G4Box.hh>
#include <G4Tubs.hh>
#include <G4Ellipsoid.hh>
#include <G4UnionSolid.hh>
#include <G4ReflectedSolid.hh>
#include <G4SubtractionSolid.hh>
#include <G4IntersectionSolid.hh>
#include <G4VSensitiveDetector.hh>
Markus Frank
committed
#include <G4Region.hh>
#include <G4Element.hh>
#include <G4Isotope.hh>
#include <G4Material.hh>
#include <G4UserLimits.hh>
#include <G4FieldManager.hh>
#include <G4LogicalVolume.hh>
#include <G4ReflectionFactory.hh>
#include <G4OpticalSurface.hh>
#include <G4LogicalSkinSurface.hh>
#include <G4ElectroMagneticField.hh>
#include <G4LogicalBorderSurface.hh>
#include <G4MaterialPropertiesTable.hh>
Markus Frank
committed
#include <G4MaterialPropertiesIndex.hh>
Markus Frank
committed
#include <G4ScaledSolid.hh>
#include <CLHEP/Units/SystemOfUnits.h>
Markus Frank
committed
// C/C++ include files
Markus Frank
committed
#include <iostream>
#include <iomanip>
#include <sstream>
namespace units = dd4hep;
using namespace dd4hep::detail;
using namespace dd4hep::sim;
using namespace dd4hep;
Markus Frank
committed
#include <DDG4/Geant4AssemblyVolume.h>
#include <DD4hep/DetectorTools.h>
static constexpr const double CM_2_MM = (CLHEP::centimeter/dd4hep::centimeter);
static constexpr const char* GEANT4_TAG_IGNORE = "Geant4-ignore";
static constexpr const char* GEANT4_TAG_PLUGIN = "Geant4-plugin";
static constexpr const char* GEANT4_TAG_BIRKSCONSTANT = "BirksConstant";
static constexpr const char* GEANT4_TAG_MEE = "MeanExcitationEnergy";
static constexpr const char* GEANT4_TAG_ENE_PER_ION_PAIR = "MeanEnergyPerIonPair";
namespace {
static string indent = "";
bool is_left_handed(const TGeoMatrix* m) {
const Double_t* r = m->GetRotationMatrix();
if ( r ) {
Double_t det =
r[0]*r[4]*r[8] + r[3]*r[7]*r[2] + r[6]*r[1]*r[5] -
r[2]*r[4]*r[6] - r[5]*r[7]*r[0] - r[8]*r[1]*r[3];
return det < 0e0;
}
return false;
}
class G4UserRegionInformation : public G4VUserRegionInformation {
public:
Region region;
double threshold;
bool storeSecondaries;
G4UserRegionInformation()
Markus Frank
committed
: threshold(0.0), storeSecondaries(false) {
}
virtual ~G4UserRegionInformation() {
}
if (region.isValid())
printout(DEBUG, "Region", "Name:%s", region.name());
pair<double,double> g4PropertyConversion(int index) {
switch(index) {
case kRINDEX: return make_pair(CLHEP::keV/units::keV, 1.0);
case kREFLECTIVITY: return make_pair(CLHEP::keV/units::keV, 1.0);
case kREALRINDEX: return make_pair(CLHEP::keV/units::keV, 1.0);
case kIMAGINARYRINDEX: return make_pair(CLHEP::keV/units::keV, 1.0);
case kEFFICIENCY: return make_pair(CLHEP::keV/units::keV, 1.0);
case kTRANSMITTANCE: return make_pair(CLHEP::keV/units::keV, 1.0);
case kSPECULARLOBECONSTANT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kSPECULARSPIKECONSTANT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kBACKSCATTERCONSTANT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kGROUPVEL: return make_pair(CLHEP::keV/units::keV, (CLHEP::m/CLHEP::s)/(units::m/units::s)); // meter/second
case kMIEHG: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kRAYLEIGH: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m); // ??? says its a length
case kWLSCOMPONENT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kWLSABSLENGTH: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kABSLENGTH: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
#if G4VERSION_NUMBER >= 1100
case kWLSCOMPONENT2: return make_pair(CLHEP::keV/units::keV, 1.0);
case kWLSABSLENGTH2: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kSCINTILLATIONCOMPONENT1: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kSCINTILLATIONCOMPONENT2: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kSCINTILLATIONCOMPONENT3: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
#else
case kFASTCOMPONENT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kSLOWCOMPONENT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kPROTONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV); // Yields: 1/energy
case kDEUTERONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kTRITONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kALPHASCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kIONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kELECTRONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
default:
break;
}
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d", index);
#else
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d [Need Geant4 > 10.03]", index);
#endif
return make_pair(0e0,0e0);
}
double g4ConstPropertyConversion(int index) {
case kSURFACEROUGHNESS: return CLHEP::m/units::m; // Length
case kISOTHERMAL_COMPRESSIBILITY: return (CLHEP::m3/CLHEP::keV)/(units::m3/CLHEP::keV); // Volume/Energy
case kRS_SCALE_FACTOR: return 1.0; // ??
case kWLSMEANNUMBERPHOTONS: return 1.0; // ??
case kWLSTIMECONSTANT: return CLHEP::second/units::second; // Time
case kMIEHG_FORWARD: return 1.0;
case kMIEHG_BACKWARD: return 1.0;
case kMIEHG_FORWARD_RATIO: return 1.0;
case kSCINTILLATIONYIELD: return units::keV/CLHEP::keV; // Energy
case kRESOLUTIONSCALE: return 1.0;
case kFERMIPOT: return CLHEP::keV/units::keV; // Energy
case kDIFFUSION: return 1.0;
case kSPINFLIP: return 1.0;
case kLOSS: return 1.0; // ??
case kLOSSCS: return CLHEP::barn/units::barn; // ??
case kABSCS: return CLHEP::barn/units::barn; // ??
case kSCATCS: return CLHEP::barn/units::barn; // ??
case kMR_NBTHETA: return 1.0;
case kMR_NBE: return 1.0;
case kMR_RRMS: return 1.0; // ??
case kMR_CORRLEN: return CLHEP::m/units::m; // Length
case kMR_THETAMIN: return 1.0;
case kMR_THETAMAX: return 1.0;
case kMR_EMIN: return CLHEP::keV/units::keV; // Energy
case kMR_EMAX: return CLHEP::keV/units::keV; // Energy
case kMR_ANGNOTHETA: return 1.0;
case kMR_ANGNOPHI: return 1.0;
case kMR_ANGCUT: return 1.0;
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#if G4VERSION_NUMBER >= 1100
case kSCINTILLATIONTIMECONSTANT1: return CLHEP::second/units::second; // Time
case kSCINTILLATIONTIMECONSTANT2: return CLHEP::second/units::second; // Time
case kSCINTILLATIONTIMECONSTANT3: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME1: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME2: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME3: return CLHEP::second/units::second; // Time
case kSCINTILLATIONYIELD1: return 1.0;
case kSCINTILLATIONYIELD2: return 1.0;
case kSCINTILLATIONYIELD3: return 1.0;
case kPROTONSCINTILLATIONYIELD1: return 1.0;
case kPROTONSCINTILLATIONYIELD2: return 1.0;
case kPROTONSCINTILLATIONYIELD3: return 1.0;
case kDEUTERONSCINTILLATIONYIELD1: return 1.0;
case kDEUTERONSCINTILLATIONYIELD2: return 1.0;
case kDEUTERONSCINTILLATIONYIELD3: return 1.0;
case kALPHASCINTILLATIONYIELD1: return 1.0;
case kALPHASCINTILLATIONYIELD2: return 1.0;
case kALPHASCINTILLATIONYIELD3: return 1.0;
case kIONSCINTILLATIONYIELD1: return 1.0;
case kIONSCINTILLATIONYIELD2: return 1.0;
case kIONSCINTILLATIONYIELD3: return 1.0;
case kELECTRONSCINTILLATIONYIELD1: return 1.0;
case kELECTRONSCINTILLATIONYIELD2: return 1.0;
case kELECTRONSCINTILLATIONYIELD3: return 1.0;
#else
case kFASTTIMECONSTANT: return CLHEP::second/units::second; // Time
case kFASTSCINTILLATIONRISETIME: return CLHEP::second/units::second; // Time
case kSLOWTIMECONSTANT: return CLHEP::second/units::second; // Time
case kSLOWSCINTILLATIONRISETIME: return CLHEP::second/units::second; // Time
case kYIELDRATIO: return 1.0;
#endif
default:
break;
}
printout(FATAL,"Geant4Converter", "+++ Cannot convert CONST material property with index: %d", index);
#else
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d [Need Geant4 > 10.03]", index);
#endif
Geant4Converter::Geant4Converter(const Detector& description_ref)
: Geant4Mapping(description_ref), checkOverlaps(true) {
this->Geant4Mapping::init();
Markus Frank
committed
m_propagateRegions = true;
Markus Frank
committed
outputLevel = PrintLevel(printLevel() - 1);
Geant4Converter::Geant4Converter(const Detector& description_ref, PrintLevel level)
: Geant4Mapping(description_ref), checkOverlaps(true) {
Markus Frank
committed
m_propagateRegions = true;
Markus Frank
committed
outputLevel = level;
Markus Frank
committed
/// Standard destructor
Geant4Converter::~Geant4Converter() {
Markus Frank
committed
/// Handle the conversion of isotopes
void* Geant4Converter::handleIsotope(const string& /* name */, const TGeoIsotope* iso) const {
G4Isotope* g4i = data().g4Isotopes[iso];
double a_conv = (CLHEP::g / CLHEP::mole);
g4i = new G4Isotope(iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA()*a_conv);
printout(debugElements ? ALWAYS : outputLevel,
"Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA());
data().g4Isotopes[iso] = g4i;
}
return g4i;
}
/// Handle the conversion of elements
void* Geant4Converter::handleElement(const string& name, const Atom element) const {
G4Element* g4e = data().g4Elements[element];
PrintLevel lvl = debugElements ? ALWAYS : outputLevel;
if (element->GetNisotopes() > 0) {
g4e = new G4Element(name, element->GetTitle(), element->GetNisotopes());
for (int i = 0, n = element->GetNisotopes(); i < n; ++i) {
TGeoIsotope* iso = element->GetIsotope(i);
G4Isotope* g4iso = (G4Isotope*)handleIsotope(iso->GetName(), iso);
g4e->AddIsotope(g4iso, element->GetRelativeAbundance(i));
else {
// This adds in Geant4 the natural isotopes, which we normally do not want. We want to steer it outselves.
double a_conv = (CLHEP::g / CLHEP::mole);
g4e = new G4Element(element->GetTitle(), name, element->Z(), element->A()*a_conv);
printout(lvl, "Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
element->GetName(), element->Z(), element->N(), element->A());
}
stringstream str;
str << (*g4e) << endl;
printout(lvl, "Geant4Converter", "++ Created G4 element %s", str.str().c_str());
data().g4Elements[element] = g4e;
}
return g4e;
}
/// Dump material in GDML format to output stream
void* Geant4Converter::handleMaterial(const string& name, Material medium) const {
Geant4GeometryInfo& info = data();
G4Material* mat = info.g4Materials[medium];
if ( !mat ) {
PrintLevel lvl = debugMaterials ? ALWAYS : outputLevel;
TGeoMaterial* material = medium->GetMaterial();
G4State state = kStateUndefined;
double density = material->GetDensity() * (CLHEP::gram / CLHEP::cm3);
if ( density < 1e-25 )
switch ( material->GetState() ) {
case TGeoMaterial::kMatStateSolid:
state = kStateSolid;
break;
case TGeoMaterial::kMatStateLiquid:
state = kStateLiquid;
break;
case TGeoMaterial::kMatStateGas:
state = kStateGas;
break;
default:
case TGeoMaterial::kMatStateUndefined:
state = kStateUndefined;
break;
}
Markus Frank
committed
printout(lvl,"Geant4Material","+++ Setting up material %s", name.c_str());
if ( material->IsMixture() ) {
double A_total = 0.0;
double W_total = 0.0;
TGeoMixture* mix = (TGeoMixture*) material;
int nElements = mix->GetNelements();
mat = new G4Material(name, density, nElements, state,
material->GetTemperature(), material->GetPressure());
for (int i = 0; i < nElements; ++i) {
A_total += (mix->GetAmixt())[i];
W_total += (mix->GetWmixt())[i];
for (int i = 0; i < nElements; ++i) {
TGeoElement* e = mix->GetElement(i);
G4Element* g4e = (G4Element*) handleElement(e->GetName(), Atom(e));
if (!g4e) {
Markus Frank
committed
printout(ERROR, name,
"Missing element component %s for material %s. A=%f W=%f",
e->GetName(), mix->GetName(), A_total, W_total);
Markus Frank
committed
}
//mat->AddElement(g4e, (mix->GetAmixt())[i] / A_total);
mat->AddElement(g4e, (mix->GetWmixt())[i] / W_total);
}
else {
double z = material->GetZ(), a = material->GetA();
if ( z < 1.0000001 ) z = 1.0;
if ( a < 0.5000001 ) a = 1.0;
mat = new G4Material(name, z, a, density, state,
material->GetTemperature(), material->GetPressure());
}
string plugin_name;
double value;
double ionisation_mee = -2e100;
double ionisation_birks_constant = -2e100;
double ionisation_ene_per_ion_pair = -2e100;
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Attach the material properties if any
G4MaterialPropertiesTable* tab = 0;
TListIter propIt(&material->GetProperties());
for(TObject* obj=propIt.Next(); obj; obj = propIt.Next()) {
Markus Frank
committed
string exc_str;
TNamed* named = (TNamed*)obj;
TGDMLMatrix* matrix = info.manager->GetGDMLMatrix(named->GetTitle());
const char* cptr = ::strstr(matrix->GetName(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) {
Markus Frank
committed
printout(INFO,name,"++ Ignore property %s [%s]. Not Suitable for Geant4.",
matrix->GetName(), matrix->GetTitle());
continue;
}
cptr = ::strstr(matrix->GetTitle(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) {
Markus Frank
committed
printout(INFO,name,"++ Ignore property %s [%s]. Not Suitable for Geant4.",
matrix->GetName(), matrix->GetTitle());
continue;
Geant4GeometryInfo::PropertyVector* v =
(Geant4GeometryInfo::PropertyVector*)handleMaterialProperties(matrix);
if ( 0 == v ) {
except("Geant4Converter", "++ FAILED to create G4 material %s [Cannot convert property:%s]",
material->GetName(), named->GetName());
if ( 0 == tab ) {
tab = new G4MaterialPropertiesTable();
mat->SetMaterialPropertiesTable(tab);
Markus Frank
committed
int idx = -1;
try {
idx = tab->GetPropertyIndex(named->GetName());
}
catch(const std::exception& e) {
exc_str = e.what();
idx = -1;
}
catch(...) {
idx = -1;
}
Markus Frank
committed
printout(ERROR, "Geant4Converter",
Markus Frank
committed
"++ UNKNOWN Geant4 Property: %-20s %s [IGNORED]",
Markus Frank
committed
exc_str.c_str(), named->GetName());
continue;
}
// We need to convert the property from TGeo units to Geant4 units
auto conv = g4PropertyConversion(idx);
vector<double> bins(v->bins), vals(v->values);
for(std::size_t i=0, count=bins.size(); i<count; ++i)
bins[i] *= conv.first, vals[i] *= conv.second;
G4MaterialPropertyVector* vec =
Markus Frank
committed
new G4MaterialPropertyVector(&bins[0], &vals[0], bins.size());
tab->AddProperty(named->GetName(), vec);
Markus Frank
committed
printout(lvl, name, "++ Property: %-20s [%ld x %ld] -> %s ",
named->GetName(), matrix->GetRows(), matrix->GetCols(), named->GetTitle());
for(std::size_t i=0, count=v->bins.size(); i<count; ++i)
Markus Frank
committed
printout(lvl, name, " Geant4: %s %8.3g [MeV] TGeo: %8.3g [GeV] Conversion: %8.3g",
named->GetName(), bins[i], v->bins[i], conv.first);
/// Attach the material properties if any
TListIter cpropIt(&material->GetConstProperties());
for(TObject* obj=cpropIt.Next(); obj; obj = cpropIt.Next()) {
Markus Frank
committed
string exc_str;
Bool_t err = kFALSE;
TNamed* named = (TNamed*)obj;
const char* cptr = ::strstr(named->GetName(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) {
Markus Frank
committed
printout(INFO, name, "++ Ignore CONST property %s [%s].",
named->GetName(), named->GetTitle());
continue;
}
cptr = ::strstr(named->GetTitle(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) {
Markus Frank
committed
printout(INFO, name,"++ Ignore CONST property %s [%s].",
named->GetName(), named->GetTitle());
continue;
cptr = ::strstr(named->GetName(), GEANT4_TAG_PLUGIN);
if ( 0 != cptr ) {
printout(INFO, name, "++ Ignore CONST property %s [%s] --> Plugin.",
named->GetName(), named->GetTitle());
plugin_name = named->GetTitle();
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_BIRKSCONSTANT);
if ( 0 != cptr ) {
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_BIRKSCONSTANT,&err);
if ( err == kFALSE ) ionisation_birks_constant = value * (CLHEP::mm/CLHEP::MeV)/(units::mm/units::MeV);
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_MEE);
if ( 0 != cptr ) {
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_MEE,&err);
if ( err == kFALSE ) ionisation_mee = value * (CLHEP::MeV/units::MeV);
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_ENE_PER_ION_PAIR);
if ( 0 != cptr ) {
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_ENE_PER_ION_PAIR,&err);
if ( err == kFALSE ) ionisation_ene_per_ion_pair = value * (CLHEP::MeV/units::MeV);
continue;
}
err = kFALSE;
value = info.manager->GetProperty(named->GetTitle(),&err);
Markus Frank
committed
except(name,
"++ FAILED to create G4 material %s [Cannot convert const property: %s]",
material->GetName(), named->GetName());
}
if ( 0 == tab ) {
tab = new G4MaterialPropertiesTable();
mat->SetMaterialPropertiesTable(tab);
}
Markus Frank
committed
int idx = -1;
try {
idx = tab->GetConstPropertyIndex(named->GetName());
Markus Frank
committed
}
catch(const std::exception& e) {
exc_str = e.what();
idx = -1;
}
catch(...) {
idx = -1;
}
Markus Frank
committed
printout(ERROR, name,
Markus Frank
committed
"++ UNKNOWN Geant4 CONST Property: %-20s %s [IGNORED]",
exc_str.c_str(), named->GetName());
continue;
}
// We need to convert the property from TGeo units to Geant4 units
double conv = g4ConstPropertyConversion(idx);
printout(lvl, name, "++ CONST Property: %-20s %g ", named->GetName(), value);
tab->AddConstProperty(named->GetName(), value * conv);
// Set Birk's constant if it was supplied in the material table of the TGeoMaterial
auto* ionisation = mat->GetIonisation();
str << (*mat);
if ( ionisation ) {
if ( ionisation_birks_constant > 0e0 ) {
ionisation->SetBirksConstant(ionisation_birks_constant);
}
if ( ionisation_mee > -1e100 ) {
ionisation->SetMeanExcitationEnergy(ionisation_mee);
}
if ( ionisation_ene_per_ion_pair > 0e0 ) {
ionisation->SetMeanEnergyPerIonPair(ionisation_ene_per_ion_pair);
}
str << " log(MEE): " << std::setprecision(4) << ionisation->GetLogMeanExcEnergy();
if ( ionisation_birks_constant > 0e0 )
str << " Birk's constant: " << std::setprecision(4) << ionisation->GetBirksConstant() << " [mm/MeV]";
if ( ionisation_ene_per_ion_pair > 0e0 )
str << " Mean Energy Per Ion Pair: " << std::setprecision(4) << ionisation->GetMeanEnergyPerIonPair()/CLHEP::eV << " [eV]";
}
else {
str << " No ionisation parameters availible.";
}
Markus Frank
committed
printout(lvl, name, "++ Created G4 material %s", str.str().c_str());
if ( !plugin_name.empty() ) {
// Call plugin to create extended material if requested
Detector* det = const_cast<Detector*>(&m_detDesc);
G4Material* extended_mat = PluginService::Create<G4Material*>(plugin_name, det, medium, mat);
if ( !extended_mat ) {
except("G4Cnv::material["+name+"]","++ FATAL Failed to call plugin to create material.");
}
mat = extended_mat;
}
info.g4Materials[medium] = mat;
void* Geant4Converter::handleSolid(const string& name, const TGeoShape* shape) const {
Markus Frank
committed
G4VSolid* solid = 0;
if ( shape ) {
if ( 0 != (solid = data().g4Solids[shape]) ) {
Markus Frank
committed
return solid;
}
TClass* isa = shape->IsA();
PrintLevel lvl = debugShapes ? ALWAYS : outputLevel;
if (isa == TGeoShapeAssembly::Class()) {
// Assemblies have no corresponding 'shape' in Geant4. Ignore the shape translation.
// It does not harm, since this 'shape' is never accessed afterwards.
data().g4Solids[shape] = solid = convertShape<TGeoShapeAssembly>(shape);
return solid;
Markus Frank
committed
}
else if (isa == TGeoBBox::Class())
solid = convertShape<TGeoBBox>(shape);
else if (isa == TGeoTube::Class())
solid = convertShape<TGeoTube>(shape);
else if (isa == TGeoTubeSeg::Class())
solid = convertShape<TGeoTubeSeg>(shape);
else if (isa == TGeoCtub::Class())
solid = convertShape<TGeoCtub>(shape);
else if (isa == TGeoEltu::Class())
solid = convertShape<TGeoEltu>(shape);
else if (isa == TwistedTubeObject::Class())
solid = convertShape<TwistedTubeObject>(shape);
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
else if (isa == TGeoTrd1::Class())
solid = convertShape<TGeoTrd1>(shape);
else if (isa == TGeoTrd2::Class())
solid = convertShape<TGeoTrd2>(shape);
else if (isa == TGeoHype::Class())
solid = convertShape<TGeoHype>(shape);
else if (isa == TGeoXtru::Class())
solid = convertShape<TGeoXtru>(shape);
else if (isa == TGeoPgon::Class())
solid = convertShape<TGeoPgon>(shape);
else if (isa == TGeoPcon::Class())
solid = convertShape<TGeoPcon>(shape);
else if (isa == TGeoCone::Class())
solid = convertShape<TGeoCone>(shape);
else if (isa == TGeoConeSeg::Class())
solid = convertShape<TGeoConeSeg>(shape);
else if (isa == TGeoParaboloid::Class())
solid = convertShape<TGeoParaboloid>(shape);
else if (isa == TGeoSphere::Class())
solid = convertShape<TGeoSphere>(shape);
else if (isa == TGeoTorus::Class())
solid = convertShape<TGeoTorus>(shape);
else if (isa == TGeoTrap::Class())
solid = convertShape<TGeoTrap>(shape);
else if (isa == TGeoArb8::Class())
solid = convertShape<TGeoArb8>(shape);
#if ROOT_VERSION_CODE > ROOT_VERSION(6,21,0)
else if (isa == TGeoTessellated::Class())
solid = convertShape<TGeoTessellated>(shape);
else if (isa == TGeoScaledShape::Class()) {
TGeoScaledShape* sh = (TGeoScaledShape*) shape;
const double* vals = sh->GetScale()->GetScale();
G4Scale3D scal(vals[0], vals[1], vals[2]);
G4VSolid* g4solid = (G4VSolid*)handleSolid(sol->GetName(), sol);
if ( scal.xx()>0e0 && scal.yy()>0e0 && scal.zz()>0e0 )
Markus Frank
committed
solid = new G4ScaledSolid(sh->GetName(), g4solid, scal);
Markus Frank
committed
solid = new G4ReflectedSolid(g4solid->GetName()+"_refl", g4solid, scal);
}
else if ( isa == TGeoCompositeShape::Class() ) {
const TGeoCompositeShape* sh = (const TGeoCompositeShape*) shape;
const TGeoBoolNode* boolean = sh->GetBoolNode();
TGeoBoolNode::EGeoBoolType oper = boolean->GetBooleanOperator();
TGeoMatrix* matrix = boolean->GetRightMatrix();
G4VSolid* left = (G4VSolid*) handleSolid(name + "_left", boolean->GetLeftShape());
G4VSolid* right = (G4VSolid*) handleSolid(name + "_right", boolean->GetRightShape());
except("Geant4Converter","++ No left Geant4 Solid present for composite shape: %s",name.c_str());
except("Geant4Converter","++ No right Geant4 Solid present for composite shape: %s",name.c_str());
TGeoShape* ls = boolean->GetLeftShape();
TGeoShape* rs = boolean->GetRightShape();
if (strcmp(ls->ClassName(), "TGeoScaledShape") == 0 &&
Markus Frank
committed
strcmp(rs->ClassName(), "TGeoBBox") == 0) {
if (strcmp(((TGeoScaledShape *)ls)->GetShape()->ClassName(), "TGeoSphere") == 0) {
if (oper == TGeoBoolNode::kGeoIntersection) {
TGeoScaledShape* lls = (TGeoScaledShape *)ls;
TGeoBBox* rrs = (TGeoBBox*)rs;
Markus Frank
committed
double sx = lls->GetScale()->GetScale()[0];
double sy = lls->GetScale()->GetScale()[1];
Markus Frank
committed
double radius = ((TGeoSphere *)lls->GetShape())->GetRmax();
Markus Frank
committed
double dz = rrs->GetDZ();
double zorig = rrs->GetOrigin()[2];
double zcut2 = dz + zorig;
double zcut1 = 2 * zorig - zcut2;
Markus Frank
committed
solid = new G4Ellipsoid(name,
sx * radius * CM_2_MM,
sy * radius * CM_2_MM,
radius * CM_2_MM,
zcut1 * CM_2_MM,
zcut2 * CM_2_MM);
data().g4Solids[shape] = solid;
return solid;
}
}
if ( matrix->IsRotation() ) {
G4Transform3D transform;
g4Transform(matrix, transform);
if (oper == TGeoBoolNode::kGeoSubtraction)
solid = new G4SubtractionSolid(name, left, right, transform);
else if (oper == TGeoBoolNode::kGeoUnion)
solid = new G4UnionSolid(name, left, right, transform);
else if (oper == TGeoBoolNode::kGeoIntersection)
solid = new G4IntersectionSolid(name, left, right, transform);
const Double_t *t = matrix->GetTranslation();
G4ThreeVector transform(t[0] * CM_2_MM, t[1] * CM_2_MM, t[2] * CM_2_MM);
if (oper == TGeoBoolNode::kGeoSubtraction)
solid = new G4SubtractionSolid(name, left, right, 0, transform);
else if (oper == TGeoBoolNode::kGeoUnion)
solid = new G4UnionSolid(name, left, right, 0, transform);
else if (oper == TGeoBoolNode::kGeoIntersection)
solid = new G4IntersectionSolid(name, left, right, 0, transform);
except("Geant4Converter","++ Failed to handle unknown solid shape: %s of type %s",
name.c_str(), isa->GetName());
printout(lvl,"Geant4Converter","++ Successessfully converted shape [%p] of type:%s to %s.",
solid,isa->GetName(),typeName(typeid(*solid)).c_str());
data().g4Solids[shape] = solid;
}
return solid;
}
/// Dump logical volume in GDML format to output stream
void* Geant4Converter::handleVolume(const string& name, const TGeoVolume* volume) const {
Geant4GeometryInfo& info = data();
PrintLevel lvl = debugVolumes ? ALWAYS : outputLevel;
Markus Frank
committed
Geant4GeometryMaps::VolumeMap::const_iterator volIt = info.g4Volumes.find(volume);
Volume _v(volume);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ Volume %s not converted [Veto'ed for simulation]",volume->GetName());
return nullptr;
}
else if (volIt == info.g4Volumes.end() ) {
string n = volume->GetName();
TGeoMedium* med = volume->GetMedium();
TGeoShape* sh = volume->GetShape();
G4VSolid* solid = (G4VSolid*) handleSolid(sh->GetName(), sh);
bool is_assembly = sh->IsA() == TGeoShapeAssembly::Class() || volume->IsA() == TGeoVolumeAssembly::Class();
printout(lvl, "Geant4Converter", "++ Convert Volume %-32s: %p %s/%s assembly:%s",
n.c_str(), volume, sh->IsA()->GetName(), volume->IsA()->GetName(), yes_no(is_assembly));
if ( is_assembly ) {
return nullptr;
}
Region reg = _v.region();
LimitSet lim = _v.limitSet();
VisAttr vis = _v.visAttributes();
G4Region* region = reg.isValid() ? info.g4Regions[reg] : nullptr;
G4UserLimits* limits = lim.isValid() ? info.g4Limits[lim] : nullptr;
G4Material* medium = (G4Material*) handleMaterial(med->GetName(), Material(med));
/// Check all pre-conditions
if ( !solid ) {
except("G4Converter","++ No Geant4 Solid present for volume:" + n);
Markus Frank
committed
}
else if ( !medium ) {
except("G4Converter","++ No Geant4 material present for volume:" + n);
Markus Frank
committed
}
else if ( reg.isValid() && !region ) {
except("G4Cnv::volume["+name+"]"," ++ Failed to access Geant4 region %s.",reg.name());
Markus Frank
committed
}
else if ( lim.isValid() && !limits ) {
except("G4Cnv::volume["+name+"]","++ FATAL Failed to access Geant4 user limits %s.",lim.name());
}
else if ( limits ) {
printout(lvl, "Geant4Converter", "++ Volume + Apply LIMITS settings:%-24s to volume %s.",
Markus Frank
committed
lim.name(), _v.name());
Markus Frank
committed
}
G4LogicalVolume* g4vol = nullptr;
if ( _v.hasProperties() && !_v.getProperty(GEANT4_TAG_PLUGIN,"").empty() ) {
Detector* det = const_cast<Detector*>(&m_detDesc);
string plugin = _v.getProperty(GEANT4_TAG_PLUGIN,"");
g4vol = PluginService::Create<G4LogicalVolume*>(plugin, det, _v, solid, medium);
if ( !g4vol ) {
except("G4Cnv::volume["+name+"]","++ FATAL Failed to call plugin to create logical volume.");
}
}
else {
g4vol = new G4LogicalVolume(solid, medium, n, nullptr, nullptr, nullptr);
}
if ( limits ) {
g4vol->SetUserLimits(limits);
}
printout(lvl, "Geant4Converter", "++ Volume + Apply REGION settings: %s to volume %s.",
Markus Frank
committed
reg.name(), _v.name());
g4vol->SetRegion(region);
region->AddRootLogicalVolume(g4vol);
G4VisAttributes* vattr = vis.isValid() ? (G4VisAttributes*)handleVis(vis.name(), vis) : nullptr;
if ( vattr ) {
g4vol->SetVisAttributes(vattr);
Markus Frank
committed
}
info.g4Volumes[volume] = g4vol;
printout(lvl, "Geant4Converter", "++ Volume + %s converted: %p ---> G4: %p", n.c_str(), volume, g4vol);
return nullptr;
/// Dump logical volume in GDML format to output stream
void* Geant4Converter::collectVolume(const string& /* name */, const TGeoVolume* volume) const {
Geant4GeometryInfo& info = data();
Volume _v(volume);
Region reg = _v.region();
LimitSet lim = _v.limitSet();
SensitiveDetector det = _v.sensitiveDetector();
if ( lim.isValid() )
info.limits[lim].insert(volume);
if ( reg.isValid() )
info.regions[reg].insert(volume);
if ( det.isValid() )
info.sensitives[det].insert(volume);
return (void*)volume;
/// Dump volume placement in GDML format to output stream
void* Geant4Converter::handleAssembly(const string& name, const TGeoNode* node) const {
TGeoVolume* mot_vol = node->GetVolume();
PrintLevel lvl = debugVolumes ? ALWAYS : outputLevel;
if ( mot_vol->IsA() != TGeoVolumeAssembly::Class() ) {
return nullptr;
Volume _v(mot_vol);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ AssemblyNode %s not converted [Veto'ed for simulation]",node->GetName());
return nullptr;
Geant4GeometryInfo& info = data();
Geant4AssemblyVolume* g4 = info.g4AssemblyVolumes[node];
if ( g4 ) {
printout(ALWAYS, "Geant4Converter", "+++ Assembly: **** : Re-using existing assembly: %s",node->GetName());
}
if ( !g4 ) {
g4 = new Geant4AssemblyVolume();
for(Int_t i=0; i < mot_vol->GetNdaughters(); ++i) {
TGeoNode* dau = mot_vol->GetNode(i);
TGeoVolume* dau_vol = dau->GetVolume();
TGeoMatrix* tr = dau->GetMatrix();
G4Transform3D transform;
g4Transform(tr, transform);
if ( is_left_handed(tr) ) {
Markus Frank
committed
G4Scale3D scale;
G4Rotate3D rot;
G4Translate3D trans;
transform.getDecomposition(scale, rot, trans);
printout(debugReflections ? ALWAYS : lvl, "Geant4Converter",
"++ Placing reflected ASSEMBLY. dau:%s to mother %s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz(),
Markus Frank
committed
scale.xx(), scale.yy(), scale.zz());
if ( dau_vol->IsA() == TGeoVolumeAssembly::Class() ) {
Geant4GeometryMaps::AssemblyMap::iterator ia = info.g4AssemblyVolumes.find(dau);
if ( ia == info.g4AssemblyVolumes.end() ) {
Markus Frank
committed
printout(FATAL, "Geant4Converter", "+++ Invalid child assembly at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
return nullptr;
Markus Frank
committed
}
g4->placeAssembly(dau, (*ia).second, transform);
printout(lvl, "Geant4Converter", "+++ Assembly: AddPlacedAssembly : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
Geant4GeometryMaps::VolumeMap::iterator iv = info.g4Volumes.find(dau_vol);
if ( iv == info.g4Volumes.end() ) {
printout(FATAL,"Geant4Converter", "+++ Invalid child volume at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
except("Geant4Converter", "+++ Invalid child volume at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
Markus Frank
committed
}
g4->placeVolume(dau,(*iv).second, transform);
printout(lvl, "Geant4Converter", "+++ Assembly: AddPlacedVolume : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
info.g4AssemblyVolumes[node] = g4;
/// Dump volume placement in GDML format to output stream
void* Geant4Converter::handlePlacement(const string& name, const TGeoNode* node) const {
Geant4GeometryInfo& info = data();
PrintLevel lvl = debugPlacements ? ALWAYS : outputLevel;
Markus Frank
committed
Geant4GeometryMaps::PlacementMap::const_iterator g4it = info.g4Placements.find(node);
G4VPhysicalVolume* g4 = (g4it == info.g4Placements.end()) ? 0 : (*g4it).second;
TGeoVolume* vol = node->GetVolume();
Volume _v(vol);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ Placement %s not converted [Veto'ed for simulation]",node->GetName());
return nullptr;
TGeoVolume* mot_vol = node->GetMotherVolume();
TGeoMatrix* tr = node->GetMatrix();
except("Geant4Converter",
Markus Frank
committed
"++ Attempt to handle placement without transformation:%p %s of type %s vol:%p",
node, node->GetName(), node->IsA()->GetName(), vol);
except("Geant4Converter", "++ Unknown G4 volume:%p %s of type %s ptr:%p",
Markus Frank
committed
node, node->GetName(), node->IsA()->GetName(), vol);
int copy = node->GetNumber();
bool node_is_reflected = is_left_handed(tr);
bool node_is_assembly = vol->IsA() == TGeoVolumeAssembly::Class();
bool mother_is_assembly = mot_vol ? mot_vol->IsA() == TGeoVolumeAssembly::Class() : false;
G4Transform3D transform;
Markus Frank
committed
Geant4GeometryMaps::VolumeMap::const_iterator volIt = info.g4Volumes.find(mot_vol);
g4Transform(tr, transform);
if ( mother_is_assembly ) {
Markus Frank
committed
//
// Mother is an assembly:
// Nothing to do here, because:
// -- placed volumes were already added before in "handleAssembly"
// -- imprint cannot be made, because this requires a logical volume as a mother
//
printout(lvl, "Geant4Converter", "+++ Assembly: **** : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
Markus Frank
committed
}
G4Scale3D scale;
G4Rotate3D rot;
G4Translate3D trans;
transform.getDecomposition(scale, rot, trans);
if ( node_is_assembly ) {
Markus Frank
committed
//
// Node is an assembly:
// Imprint the assembly. The mother MUST already be transformed.
//
printout(lvl, "Geant4Converter", "++ Assembly: makeImprint: dau:%-12s %s in mother %-12s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
node->GetName(), node_is_reflected ? "(REFLECTED)" : "",
Markus Frank
committed
mot_vol ? mot_vol->GetName() : "<unknown>",
transform.dx(), transform.dy(), transform.dz(),
Markus Frank
committed
scale.xx(), scale.yy(), scale.zz());
Markus Frank
committed
Geant4AssemblyVolume* ass = (Geant4AssemblyVolume*)info.g4AssemblyVolumes[node];
Geant4AssemblyVolume::Chain chain;
chain.emplace_back(node);
ass->imprint(*this, node, chain, ass, (*volIt).second, transform, copy, checkOverlaps);
else if ( node != info.manager->GetTopNode() && volIt == info.g4Volumes.end() ) {
Markus Frank
committed
throw logic_error("Geant4Converter: Invalid mother volume found!");
PlacedVolume pv(node);
const auto* pv_data = pv.data();
G4LogicalVolume* g4vol = info.g4Volumes[vol];
G4LogicalVolume* g4mot = info.g4Volumes[mot_vol];
G4PhysicalVolumesPair pvPlaced { nullptr, nullptr };
if ( pv_data && pv_data->params && (pv_data->params->flags&Volume::REPLICATED) ) {
EAxis axis = kUndefined;
double width = 0e0, offset = 0e0;
auto flags = pv_data->params->flags;
auto count = pv_data->params->trafo1D.second;
const auto& start = pv_data->params->start.Translation().Vect();
const auto& delta = pv_data->params->trafo1D.first.Translation().Vect();
if ( flags&Volume::X_axis )
{ axis = kXAxis; width = delta.X(); offset = start.X(); }
else if ( flags&Volume::Y_axis )
{ axis = kYAxis; width = delta.Y(); offset = start.Y(); }
else if ( flags&Volume::Z_axis )
{ axis = kZAxis; width = delta.Z(); offset = start.Z(); }
else
except("Geant4Converter",
"++ Replication around unknown axis is not implemented. flags: %16X", flags);
printout(INFO,"Geant4Converter","++ Replicate: Axis: %ld Count: %ld offset: %f width: %f",
axis, count, offset, width);
auto* g4pv = new G4PVReplica(name, // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume
axis, // its replication axis
count, // Number of replicas
width, // Distance between 2 replicas
offset); // Placement offset in axis direction
pvPlaced = { g4pv, nullptr };
#if 0
pvPlaced =
G4ReflectionFactory::Instance()->Replicate(name, // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume
axis, // its replication axis
count, // Number of replicas
width, // Distance between 2 replicas
offset); // Placement offset in axis direction
/// Update replica list to avoid additional conversions...
auto* g4pv = pvPlaced.second ? pvPlaced.second : pvPlaced.first;
for( auto& handle : pv_data->params->placements )
info.g4Placements[handle.ptr()] = g4pv;
}
else if ( pv_data && pv_data->params ) {
auto* g4par = new Geant4PlacementParameterisation(pv);
auto* g4pv = new G4PVParameterised(name, // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume
g4par->axis(), // its replication axis
g4par->count(), // Number of replicas
g4par); // G4 parametrization
pvPlaced = { g4pv, nullptr };
/// Update replica list to avoid additional conversions...
for( auto& handle : pv_data->params->placements )
info.g4Placements[handle.ptr()] = g4pv;
}
else {
pvPlaced =
G4ReflectionFactory::Instance()->Place(transform, // no rotation
name, // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume