Newer
Older
Markus Frank
committed
//==========================================================================
Markus Frank
committed
//--------------------------------------------------------------------------
// Copyright (C) Organisation europeenne pour la Recherche nucleaire (CERN)
Markus Frank
committed
// All rights reserved.
Markus Frank
committed
// For the licensing terms see $DD4hepINSTALL/LICENSE.
// For the list of contributors see $DD4hepINSTALL/doc/CREDITS.
Markus Frank
committed
// Author : M.Frank
//
//==========================================================================
Markus Frank
committed
// Framework include files
Markus Frank
committed
#include <DD4hep/Detector.h>
#include <DD4hep/Plugins.h>
#include <DD4hep/Shapes.h>
#include <DD4hep/Volumes.h>
#include <DD4hep/Printout.h>
#include <DD4hep/DD4hepUnits.h>
#include <DD4hep/PropertyTable.h>
#include <DD4hep/detail/ShapesInterna.h>
#include <DD4hep/detail/ObjectsInterna.h>
#include <DD4hep/detail/DetectorInterna.h>
Markus Frank
committed
#include <DDG4/Geant4Field.h>
#include <DDG4/Geant4Helpers.h>
Markus Frank
committed
#include <DDG4/Geant4Converter.h>
#include <DDG4/Geant4UserLimits.h>
#include <DDG4/Geant4PlacementParameterisation.h>
#include "Geant4ShapeConverter.h"
#include <TClass.h>
Markus Frank
committed
#include <TGeoBoolNode.h>
Markus Frank
committed
#include <G4Version.hh>
#include <G4VisAttributes.hh>
#include <G4PVParameterised.hh>
Markus Frank
committed
#include <G4ProductionCuts.hh>
#include <G4VUserRegionInformation.hh>
Markus Frank
committed
#include <G4Box.hh>
#include <G4Tubs.hh>
#include <G4Ellipsoid.hh>
#include <G4UnionSolid.hh>
#include <G4ReflectedSolid.hh>
#include <G4SubtractionSolid.hh>
#include <G4IntersectionSolid.hh>
#include <G4VSensitiveDetector.hh>
Markus Frank
committed
#include <G4Region.hh>
#include <G4Element.hh>
#include <G4Isotope.hh>
#include <G4Material.hh>
#include <G4UserLimits.hh>
#include <G4FieldManager.hh>
#include <G4LogicalVolume.hh>
#include <G4ReflectionFactory.hh>
#include <G4OpticalSurface.hh>
#include <G4LogicalSkinSurface.hh>
#include <G4ElectroMagneticField.hh>
#include <G4LogicalBorderSurface.hh>
#include <G4MaterialPropertiesTable.hh>
Markus Frank
committed
#include <G4MaterialPropertiesIndex.hh>
Markus Frank
committed
#include <G4ScaledSolid.hh>
#include <CLHEP/Units/SystemOfUnits.h>
Markus Frank
committed
// C/C++ include files
Markus Frank
committed
#include <iostream>
#include <iomanip>
#include <sstream>
namespace units = dd4hep;
using namespace dd4hep::detail;
using namespace dd4hep::sim;
using namespace dd4hep;
Markus Frank
committed
#include <DDG4/Geant4AssemblyVolume.h>
#include <DD4hep/DetectorTools.h>
static constexpr const double CM_2_MM = (CLHEP::centimeter/dd4hep::centimeter);
static constexpr const char* GEANT4_TAG_IGNORE = "Geant4-ignore";
static constexpr const char* GEANT4_TAG_PLUGIN = "Geant4-plugin";
static constexpr const char* GEANT4_TAG_BIRKSCONSTANT = "BirksConstant";
static constexpr const char* GEANT4_TAG_MEE = "MeanExcitationEnergy";
static constexpr const char* GEANT4_TAG_ENE_PER_ION_PAIR = "MeanEnergyPerIonPair";
namespace {
static string indent = "";
bool is_left_handed(const TGeoMatrix* m) {
const Double_t* r = m->GetRotationMatrix();
if ( r ) {
Double_t det =
r[0]*r[4]*r[8] + r[3]*r[7]*r[2] + r[6]*r[1]*r[5] -
r[2]*r[4]*r[6] - r[5]*r[7]*r[0] - r[8]*r[1]*r[3];
return det < 0e0;
}
return false;
}
class G4UserRegionInformation : public G4VUserRegionInformation {
public:
Region region;
double threshold;
bool storeSecondaries;
G4UserRegionInformation()
Markus Frank
committed
: threshold(0.0), storeSecondaries(false) {
}
virtual ~G4UserRegionInformation() {
}
if (region.isValid())
printout(DEBUG, "Region", "Name:%s", region.name());
pair<double,double> g4PropertyConversion(int index) {
switch(index) {
case kRINDEX: return make_pair(CLHEP::keV/units::keV, 1.0);
case kREFLECTIVITY: return make_pair(CLHEP::keV/units::keV, 1.0);
case kREALRINDEX: return make_pair(CLHEP::keV/units::keV, 1.0);
case kIMAGINARYRINDEX: return make_pair(CLHEP::keV/units::keV, 1.0);
case kEFFICIENCY: return make_pair(CLHEP::keV/units::keV, 1.0);
case kTRANSMITTANCE: return make_pair(CLHEP::keV/units::keV, 1.0);
case kSPECULARLOBECONSTANT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kSPECULARSPIKECONSTANT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kBACKSCATTERCONSTANT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kGROUPVEL: return make_pair(CLHEP::keV/units::keV, (CLHEP::m/CLHEP::s)/(units::m/units::s)); // meter/second
case kMIEHG: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kRAYLEIGH: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m); // ??? says its a length
case kWLSCOMPONENT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kWLSABSLENGTH: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kABSLENGTH: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
#if G4VERSION_NUMBER >= 1100
case kWLSCOMPONENT2: return make_pair(CLHEP::keV/units::keV, 1.0);
case kWLSABSLENGTH2: return make_pair(CLHEP::keV/units::keV, CLHEP::m/units::m);
case kSCINTILLATIONCOMPONENT1: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kSCINTILLATIONCOMPONENT2: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kSCINTILLATIONCOMPONENT3: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
#else
case kFASTCOMPONENT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kSLOWCOMPONENT: return make_pair(CLHEP::keV/units::keV, 1.0);
case kPROTONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV); // Yields: 1/energy
case kDEUTERONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kTRITONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kALPHASCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kIONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
case kELECTRONSCINTILLATIONYIELD: return make_pair(CLHEP::keV/units::keV, units::keV/CLHEP::keV);
default:
break;
}
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d", index);
#else
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d [Need Geant4 > 10.03]", index);
#endif
return make_pair(0e0,0e0);
}
double g4ConstPropertyConversion(int index) {
case kSURFACEROUGHNESS: return CLHEP::m/units::m; // Length
case kISOTHERMAL_COMPRESSIBILITY: return (CLHEP::m3/CLHEP::keV)/(units::m3/CLHEP::keV); // Volume/Energy
case kRS_SCALE_FACTOR: return 1.0; // ??
case kWLSMEANNUMBERPHOTONS: return 1.0; // ??
case kWLSTIMECONSTANT: return CLHEP::second/units::second; // Time
case kMIEHG_FORWARD: return 1.0;
case kMIEHG_BACKWARD: return 1.0;
case kMIEHG_FORWARD_RATIO: return 1.0;
case kSCINTILLATIONYIELD: return units::keV/CLHEP::keV; // Energy
case kRESOLUTIONSCALE: return 1.0;
case kFERMIPOT: return CLHEP::keV/units::keV; // Energy
case kDIFFUSION: return 1.0;
case kSPINFLIP: return 1.0;
case kLOSS: return 1.0; // ??
case kLOSSCS: return CLHEP::barn/units::barn; // ??
case kABSCS: return CLHEP::barn/units::barn; // ??
case kSCATCS: return CLHEP::barn/units::barn; // ??
case kMR_NBTHETA: return 1.0;
case kMR_NBE: return 1.0;
case kMR_RRMS: return 1.0; // ??
case kMR_CORRLEN: return CLHEP::m/units::m; // Length
case kMR_THETAMIN: return 1.0;
case kMR_THETAMAX: return 1.0;
case kMR_EMIN: return CLHEP::keV/units::keV; // Energy
case kMR_EMAX: return CLHEP::keV/units::keV; // Energy
case kMR_ANGNOTHETA: return 1.0;
case kMR_ANGNOPHI: return 1.0;
case kMR_ANGCUT: return 1.0;
#if G4VERSION_NUMBER >= 1100
case kSCINTILLATIONTIMECONSTANT1: return CLHEP::second/units::second; // Time
case kSCINTILLATIONTIMECONSTANT2: return CLHEP::second/units::second; // Time
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
case kSCINTILLATIONTIMECONSTANT3: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME1: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME2: return CLHEP::second/units::second; // Time
case kSCINTILLATIONRISETIME3: return CLHEP::second/units::second; // Time
case kSCINTILLATIONYIELD1: return 1.0;
case kSCINTILLATIONYIELD2: return 1.0;
case kSCINTILLATIONYIELD3: return 1.0;
case kPROTONSCINTILLATIONYIELD1: return 1.0;
case kPROTONSCINTILLATIONYIELD2: return 1.0;
case kPROTONSCINTILLATIONYIELD3: return 1.0;
case kDEUTERONSCINTILLATIONYIELD1: return 1.0;
case kDEUTERONSCINTILLATIONYIELD2: return 1.0;
case kDEUTERONSCINTILLATIONYIELD3: return 1.0;
case kALPHASCINTILLATIONYIELD1: return 1.0;
case kALPHASCINTILLATIONYIELD2: return 1.0;
case kALPHASCINTILLATIONYIELD3: return 1.0;
case kIONSCINTILLATIONYIELD1: return 1.0;
case kIONSCINTILLATIONYIELD2: return 1.0;
case kIONSCINTILLATIONYIELD3: return 1.0;
case kELECTRONSCINTILLATIONYIELD1: return 1.0;
case kELECTRONSCINTILLATIONYIELD2: return 1.0;
case kELECTRONSCINTILLATIONYIELD3: return 1.0;
#else
case kFASTTIMECONSTANT: return CLHEP::second/units::second; // Time
case kFASTSCINTILLATIONRISETIME: return CLHEP::second/units::second; // Time
case kSLOWTIMECONSTANT: return CLHEP::second/units::second; // Time
case kSLOWSCINTILLATIONRISETIME: return CLHEP::second/units::second; // Time
case kYIELDRATIO: return 1.0;
#endif
default:
break;
}
printout(FATAL,"Geant4Converter", "+++ Cannot convert CONST material property with index: %d", index);
#else
printout(FATAL,"Geant4Converter", "+++ Cannot convert material property with index: %d [Need Geant4 > 10.03]", index);
#endif
Geant4Converter::Geant4Converter(const Detector& description_ref)
: Geant4Mapping(description_ref), checkOverlaps(true) {
this->Geant4Mapping::init();
Markus Frank
committed
m_propagateRegions = true;
Markus Frank
committed
outputLevel = PrintLevel(printLevel() - 1);
Geant4Converter::Geant4Converter(const Detector& description_ref, PrintLevel level)
: Geant4Mapping(description_ref), checkOverlaps(true) {
Markus Frank
committed
m_propagateRegions = true;
Markus Frank
committed
outputLevel = level;
Markus Frank
committed
/// Standard destructor
Geant4Converter::~Geant4Converter() {
Markus Frank
committed
/// Handle the conversion of isotopes
void* Geant4Converter::handleIsotope(const string& /* name */, const TGeoIsotope* iso) const {
G4Isotope* g4i = data().g4Isotopes[iso];
double a_conv = (CLHEP::g / CLHEP::mole);
g4i = new G4Isotope(iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA()*a_conv);
printout(debugElements ? ALWAYS : outputLevel,
"Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
iso->GetName(), iso->GetZ(), iso->GetN(), iso->GetA());
data().g4Isotopes[iso] = g4i;
}
return g4i;
}
/// Handle the conversion of elements
void* Geant4Converter::handleElement(const string& name, const Atom element) const {
G4Element* g4e = data().g4Elements[element];
PrintLevel lvl = debugElements ? ALWAYS : outputLevel;
if (element->GetNisotopes() > 0) {
g4e = new G4Element(name, element->GetTitle(), element->GetNisotopes());
for (int i = 0, n = element->GetNisotopes(); i < n; ++i) {
TGeoIsotope* iso = element->GetIsotope(i);
G4Isotope* g4iso = (G4Isotope*)handleIsotope(iso->GetName(), iso);
g4e->AddIsotope(g4iso, element->GetRelativeAbundance(i));
else {
// This adds in Geant4 the natural isotopes, which we normally do not want. We want to steer it outselves.
double a_conv = (CLHEP::g / CLHEP::mole);
g4e = new G4Element(element->GetTitle(), name, element->Z(), element->A()*a_conv);
printout(lvl, "Geant4Converter", "++ Created G4 Isotope %s from data: Z=%d N=%d A=%.3f [g/mole]",
element->GetName(), element->Z(), element->N(), element->A());
}
stringstream str;
str << (*g4e) << endl;
printout(lvl, "Geant4Converter", "++ Created G4 element %s", str.str().c_str());
data().g4Elements[element] = g4e;
}
return g4e;
}
/// Dump material in GDML format to output stream
void* Geant4Converter::handleMaterial(const string& name, Material medium) const {
Geant4GeometryInfo& info = data();
G4Material* mat = info.g4Materials[medium];
if ( !mat ) {
PrintLevel lvl = debugMaterials ? ALWAYS : outputLevel;
TGeoMaterial* material = medium->GetMaterial();
G4State state = kStateUndefined;
double density = material->GetDensity() * (CLHEP::gram / CLHEP::cm3);
if ( density < 1e-25 )
switch ( material->GetState() ) {
case TGeoMaterial::kMatStateSolid:
state = kStateSolid;
break;
case TGeoMaterial::kMatStateLiquid:
state = kStateLiquid;
break;
case TGeoMaterial::kMatStateGas:
state = kStateGas;
break;
default:
case TGeoMaterial::kMatStateUndefined:
state = kStateUndefined;
break;
}
Markus Frank
committed
printout(lvl,"Geant4Material","+++ Setting up material %s", name.c_str());
if ( material->IsMixture() ) {
double A_total = 0.0;
double W_total = 0.0;
TGeoMixture* mix = (TGeoMixture*) material;
int nElements = mix->GetNelements();
mat = new G4Material(name, density, nElements, state,
material->GetTemperature(), material->GetPressure());
for (int i = 0; i < nElements; ++i) {
A_total += (mix->GetAmixt())[i];
W_total += (mix->GetWmixt())[i];
for (int i = 0; i < nElements; ++i) {
TGeoElement* e = mix->GetElement(i);
G4Element* g4e = (G4Element*) handleElement(e->GetName(), Atom(e));
if (!g4e) {
Markus Frank
committed
printout(ERROR, name,
"Missing element component %s for material %s. A=%f W=%f",
e->GetName(), mix->GetName(), A_total, W_total);
Markus Frank
committed
}
//mat->AddElement(g4e, (mix->GetAmixt())[i] / A_total);
mat->AddElement(g4e, (mix->GetWmixt())[i] / W_total);
}
else {
double z = material->GetZ(), a = material->GetA();
if ( z < 1.0000001 ) z = 1.0;
if ( a < 0.5000001 ) a = 1.0;
mat = new G4Material(name, z, a, density, state,
material->GetTemperature(), material->GetPressure());
}
string plugin_name;
double value;
double ionisation_mee = -2e100;
double ionisation_birks_constant = -2e100;
double ionisation_ene_per_ion_pair = -2e100;
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Attach the material properties if any
G4MaterialPropertiesTable* tab = 0;
TListIter propIt(&material->GetProperties());
for(TObject* obj=propIt.Next(); obj; obj = propIt.Next()) {
Markus Frank
committed
string exc_str;
TNamed* named = (TNamed*)obj;
TGDMLMatrix* matrix = info.manager->GetGDMLMatrix(named->GetTitle());
const char* cptr = ::strstr(matrix->GetName(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) {
Markus Frank
committed
printout(INFO,name,"++ Ignore property %s [%s]. Not Suitable for Geant4.",
matrix->GetName(), matrix->GetTitle());
continue;
}
cptr = ::strstr(matrix->GetTitle(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) {
Markus Frank
committed
printout(INFO,name,"++ Ignore property %s [%s]. Not Suitable for Geant4.",
matrix->GetName(), matrix->GetTitle());
continue;
Geant4GeometryInfo::PropertyVector* v =
(Geant4GeometryInfo::PropertyVector*)handleMaterialProperties(matrix);
if ( 0 == v ) {
except("Geant4Converter", "++ FAILED to create G4 material %s [Cannot convert property:%s]",
material->GetName(), named->GetName());
if ( 0 == tab ) {
tab = new G4MaterialPropertiesTable();
mat->SetMaterialPropertiesTable(tab);
Markus Frank
committed
int idx = -1;
try {
idx = tab->GetPropertyIndex(named->GetName());
}
catch(const std::exception& e) {
exc_str = e.what();
idx = -1;
}
catch(...) {
idx = -1;
}
Markus Frank
committed
printout(ERROR, "Geant4Converter",
Markus Frank
committed
"++ UNKNOWN Geant4 Property: %-20s %s [IGNORED]",
Markus Frank
committed
exc_str.c_str(), named->GetName());
continue;
}
// We need to convert the property from TGeo units to Geant4 units
auto conv = g4PropertyConversion(idx);
vector<double> bins(v->bins), vals(v->values);
for(std::size_t i=0, count=bins.size(); i<count; ++i)
bins[i] *= conv.first, vals[i] *= conv.second;
G4MaterialPropertyVector* vec =
Markus Frank
committed
new G4MaterialPropertyVector(&bins[0], &vals[0], bins.size());
tab->AddProperty(named->GetName(), vec);
Markus Frank
committed
printout(lvl, name, "++ Property: %-20s [%ld x %ld] -> %s ",
named->GetName(), matrix->GetRows(), matrix->GetCols(), named->GetTitle());
for(std::size_t i=0, count=v->bins.size(); i<count; ++i)
Markus Frank
committed
printout(lvl, name, " Geant4: %s %8.3g [MeV] TGeo: %8.3g [GeV] Conversion: %8.3g",
named->GetName(), bins[i], v->bins[i], conv.first);
/// Attach the material properties if any
TListIter cpropIt(&material->GetConstProperties());
for(TObject* obj=cpropIt.Next(); obj; obj = cpropIt.Next()) {
Markus Frank
committed
string exc_str;
Bool_t err = kFALSE;
TNamed* named = (TNamed*)obj;
const char* cptr = ::strstr(named->GetName(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) {
Markus Frank
committed
printout(INFO, name, "++ Ignore CONST property %s [%s].",
named->GetName(), named->GetTitle());
continue;
}
cptr = ::strstr(named->GetTitle(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) {
Markus Frank
committed
printout(INFO, name,"++ Ignore CONST property %s [%s].",
named->GetName(), named->GetTitle());
continue;
cptr = ::strstr(named->GetName(), GEANT4_TAG_PLUGIN);
if ( 0 != cptr ) {
printout(INFO, name, "++ Ignore CONST property %s [%s] --> Plugin.",
named->GetName(), named->GetTitle());
plugin_name = named->GetTitle();
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_BIRKSCONSTANT);
if ( 0 != cptr ) {
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_BIRKSCONSTANT,&err);
if ( err == kFALSE ) ionisation_birks_constant = value * (CLHEP::mm/CLHEP::MeV)/(units::mm/units::MeV);
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_MEE);
if ( 0 != cptr ) {
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_MEE,&err);
if ( err == kFALSE ) ionisation_mee = value * (CLHEP::MeV/units::MeV);
continue;
}
cptr = ::strstr(named->GetName(), GEANT4_TAG_ENE_PER_ION_PAIR);
if ( 0 != cptr ) {
err = kFALSE;
value = material->GetConstProperty(GEANT4_TAG_ENE_PER_ION_PAIR,&err);
if ( err == kFALSE ) ionisation_ene_per_ion_pair = value * (CLHEP::MeV/units::MeV);
continue;
}
err = kFALSE;
value = info.manager->GetProperty(named->GetTitle(),&err);
Markus Frank
committed
except(name,
"++ FAILED to create G4 material %s [Cannot convert const property: %s]",
material->GetName(), named->GetName());
}
if ( 0 == tab ) {
tab = new G4MaterialPropertiesTable();
mat->SetMaterialPropertiesTable(tab);
}
Markus Frank
committed
int idx = -1;
try {
idx = tab->GetConstPropertyIndex(named->GetName());
Markus Frank
committed
}
catch(const std::exception& e) {
exc_str = e.what();
idx = -1;
}
catch(...) {
idx = -1;
}
Markus Frank
committed
printout(ERROR, name,
Markus Frank
committed
"++ UNKNOWN Geant4 CONST Property: %-20s %s [IGNORED]",
exc_str.c_str(), named->GetName());
continue;
}
// We need to convert the property from TGeo units to Geant4 units
double conv = g4ConstPropertyConversion(idx);
printout(lvl, name, "++ CONST Property: %-20s %g ", named->GetName(), value);
tab->AddConstProperty(named->GetName(), value * conv);
// Set Birk's constant if it was supplied in the material table of the TGeoMaterial
auto* ionisation = mat->GetIonisation();
str << (*mat);
if ( ionisation ) {
if ( ionisation_birks_constant > 0e0 ) {
ionisation->SetBirksConstant(ionisation_birks_constant);
}
if ( ionisation_mee > -1e100 ) {
ionisation->SetMeanExcitationEnergy(ionisation_mee);
}
if ( ionisation_ene_per_ion_pair > 0e0 ) {
ionisation->SetMeanEnergyPerIonPair(ionisation_ene_per_ion_pair);
}
str << " log(MEE): " << std::setprecision(4) << ionisation->GetLogMeanExcEnergy();
if ( ionisation_birks_constant > 0e0 )
str << " Birk's constant: " << std::setprecision(4) << ionisation->GetBirksConstant() << " [mm/MeV]";
if ( ionisation_ene_per_ion_pair > 0e0 )
str << " Mean Energy Per Ion Pair: " << std::setprecision(4) << ionisation->GetMeanEnergyPerIonPair()/CLHEP::eV << " [eV]";
}
else {
str << " No ionisation parameters availible.";
}
Markus Frank
committed
printout(lvl, name, "++ Created G4 material %s", str.str().c_str());
if ( !plugin_name.empty() ) {
// Call plugin to create extended material if requested
Detector* det = const_cast<Detector*>(&m_detDesc);
G4Material* extended_mat = PluginService::Create<G4Material*>(plugin_name, det, medium, mat);
if ( !extended_mat ) {
except("G4Cnv::material["+name+"]","++ FATAL Failed to call plugin to create material.");
}
mat = extended_mat;
}
info.g4Materials[medium] = mat;
void* Geant4Converter::handleSolid(const string& name, const TGeoShape* shape) const {
Markus Frank
committed
G4VSolid* solid = 0;
if ( shape ) {
if ( 0 != (solid = data().g4Solids[shape]) ) {
Markus Frank
committed
return solid;
}
TClass* isa = shape->IsA();
PrintLevel lvl = debugShapes ? ALWAYS : outputLevel;
if (isa == TGeoShapeAssembly::Class()) {
// Assemblies have no corresponding 'shape' in Geant4. Ignore the shape translation.
// It does not harm, since this 'shape' is never accessed afterwards.
data().g4Solids[shape] = solid = convertShape<TGeoShapeAssembly>(shape);
return solid;
Markus Frank
committed
}
else if (isa == TGeoBBox::Class())
solid = convertShape<TGeoBBox>(shape);
else if (isa == TGeoTube::Class())
solid = convertShape<TGeoTube>(shape);
else if (isa == TGeoTubeSeg::Class())
solid = convertShape<TGeoTubeSeg>(shape);
else if (isa == TGeoCtub::Class())
solid = convertShape<TGeoCtub>(shape);
else if (isa == TGeoEltu::Class())
solid = convertShape<TGeoEltu>(shape);
else if (isa == TwistedTubeObject::Class())
solid = convertShape<TwistedTubeObject>(shape);
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
else if (isa == TGeoTrd1::Class())
solid = convertShape<TGeoTrd1>(shape);
else if (isa == TGeoTrd2::Class())
solid = convertShape<TGeoTrd2>(shape);
else if (isa == TGeoHype::Class())
solid = convertShape<TGeoHype>(shape);
else if (isa == TGeoXtru::Class())
solid = convertShape<TGeoXtru>(shape);
else if (isa == TGeoPgon::Class())
solid = convertShape<TGeoPgon>(shape);
else if (isa == TGeoPcon::Class())
solid = convertShape<TGeoPcon>(shape);
else if (isa == TGeoCone::Class())
solid = convertShape<TGeoCone>(shape);
else if (isa == TGeoConeSeg::Class())
solid = convertShape<TGeoConeSeg>(shape);
else if (isa == TGeoParaboloid::Class())
solid = convertShape<TGeoParaboloid>(shape);
else if (isa == TGeoSphere::Class())
solid = convertShape<TGeoSphere>(shape);
else if (isa == TGeoTorus::Class())
solid = convertShape<TGeoTorus>(shape);
else if (isa == TGeoTrap::Class())
solid = convertShape<TGeoTrap>(shape);
else if (isa == TGeoArb8::Class())
solid = convertShape<TGeoArb8>(shape);
#if ROOT_VERSION_CODE > ROOT_VERSION(6,21,0)
else if (isa == TGeoTessellated::Class())
solid = convertShape<TGeoTessellated>(shape);
else if (isa == TGeoScaledShape::Class()) {
TGeoScaledShape* sh = (TGeoScaledShape*) shape;
const double* vals = sh->GetScale()->GetScale();
G4Scale3D scal(vals[0], vals[1], vals[2]);
G4VSolid* g4solid = (G4VSolid*)handleSolid(sol->GetName(), sol);
if ( scal.xx()>0e0 && scal.yy()>0e0 && scal.zz()>0e0 )
Markus Frank
committed
solid = new G4ScaledSolid(sh->GetName(), g4solid, scal);
Markus Frank
committed
solid = new G4ReflectedSolid(g4solid->GetName()+"_refl", g4solid, scal);
}
else if ( isa == TGeoCompositeShape::Class() ) {
const TGeoCompositeShape* sh = (const TGeoCompositeShape*) shape;
const TGeoBoolNode* boolean = sh->GetBoolNode();
TGeoBoolNode::EGeoBoolType oper = boolean->GetBooleanOperator();
TGeoMatrix* matrix = boolean->GetRightMatrix();
G4VSolid* left = (G4VSolid*) handleSolid(name + "_left", boolean->GetLeftShape());
G4VSolid* right = (G4VSolid*) handleSolid(name + "_right", boolean->GetRightShape());
except("Geant4Converter","++ No left Geant4 Solid present for composite shape: %s",name.c_str());
except("Geant4Converter","++ No right Geant4 Solid present for composite shape: %s",name.c_str());
TGeoShape* ls = boolean->GetLeftShape();
TGeoShape* rs = boolean->GetRightShape();
if (strcmp(ls->ClassName(), "TGeoScaledShape") == 0 &&
Markus Frank
committed
strcmp(rs->ClassName(), "TGeoBBox") == 0) {
if (strcmp(((TGeoScaledShape *)ls)->GetShape()->ClassName(), "TGeoSphere") == 0) {
if (oper == TGeoBoolNode::kGeoIntersection) {
TGeoScaledShape* lls = (TGeoScaledShape *)ls;
TGeoBBox* rrs = (TGeoBBox*)rs;
Markus Frank
committed
double sx = lls->GetScale()->GetScale()[0];
double sy = lls->GetScale()->GetScale()[1];
Markus Frank
committed
double radius = ((TGeoSphere *)lls->GetShape())->GetRmax();
Markus Frank
committed
double dz = rrs->GetDZ();
double zorig = rrs->GetOrigin()[2];
double zcut2 = dz + zorig;
double zcut1 = 2 * zorig - zcut2;
Markus Frank
committed
solid = new G4Ellipsoid(name,
sx * radius * CM_2_MM,
sy * radius * CM_2_MM,
radius * CM_2_MM,
zcut1 * CM_2_MM,
zcut2 * CM_2_MM);
data().g4Solids[shape] = solid;
return solid;
}
}
if ( matrix->IsRotation() ) {
G4Transform3D transform;
g4Transform(matrix, transform);
if (oper == TGeoBoolNode::kGeoSubtraction)
solid = new G4SubtractionSolid(name, left, right, transform);
else if (oper == TGeoBoolNode::kGeoUnion)
solid = new G4UnionSolid(name, left, right, transform);
else if (oper == TGeoBoolNode::kGeoIntersection)
solid = new G4IntersectionSolid(name, left, right, transform);
const Double_t *t = matrix->GetTranslation();
G4ThreeVector transform(t[0] * CM_2_MM, t[1] * CM_2_MM, t[2] * CM_2_MM);
if (oper == TGeoBoolNode::kGeoSubtraction)
solid = new G4SubtractionSolid(name, left, right, 0, transform);
else if (oper == TGeoBoolNode::kGeoUnion)
solid = new G4UnionSolid(name, left, right, 0, transform);
else if (oper == TGeoBoolNode::kGeoIntersection)
solid = new G4IntersectionSolid(name, left, right, 0, transform);
except("Geant4Converter","++ Failed to handle unknown solid shape: %s of type %s",
name.c_str(), isa->GetName());
printout(lvl,"Geant4Converter","++ Successessfully converted shape [%p] of type:%s to %s.",
solid,isa->GetName(),typeName(typeid(*solid)).c_str());
data().g4Solids[shape] = solid;
}
return solid;
}
/// Dump logical volume in GDML format to output stream
void* Geant4Converter::handleVolume(const string& name, const TGeoVolume* volume) const {
Geant4GeometryInfo& info = data();
PrintLevel lvl = debugVolumes ? ALWAYS : outputLevel;
Markus Frank
committed
Geant4GeometryMaps::VolumeMap::const_iterator volIt = info.g4Volumes.find(volume);
Volume _v(volume);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ Volume %s not converted [Veto'ed for simulation]",volume->GetName());
return nullptr;
}
else if (volIt == info.g4Volumes.end() ) {
string n = volume->GetName();
TGeoMedium* med = volume->GetMedium();
TGeoShape* sh = volume->GetShape();
G4VSolid* solid = (G4VSolid*) handleSolid(sh->GetName(), sh);
bool is_assembly = sh->IsA() == TGeoShapeAssembly::Class() || volume->IsA() == TGeoVolumeAssembly::Class();
printout(lvl, "Geant4Converter", "++ Convert Volume %-32s: %p %s/%s assembly:%s",
n.c_str(), volume, sh->IsA()->GetName(), volume->IsA()->GetName(), yes_no(is_assembly));
if ( is_assembly ) {
return nullptr;
}
Region reg = _v.region();
LimitSet lim = _v.limitSet();
VisAttr vis = _v.visAttributes();
G4Region* region = reg.isValid() ? info.g4Regions[reg] : nullptr;
G4UserLimits* limits = lim.isValid() ? info.g4Limits[lim] : nullptr;
G4Material* medium = (G4Material*) handleMaterial(med->GetName(), Material(med));
/// Check all pre-conditions
if ( !solid ) {
except("G4Converter","++ No Geant4 Solid present for volume:" + n);
Markus Frank
committed
}
else if ( !medium ) {
except("G4Converter","++ No Geant4 material present for volume:" + n);
Markus Frank
committed
}
else if ( reg.isValid() && !region ) {
except("G4Cnv::volume["+name+"]"," ++ Failed to access Geant4 region %s.",reg.name());
Markus Frank
committed
}
else if ( lim.isValid() && !limits ) {
except("G4Cnv::volume["+name+"]","++ FATAL Failed to access Geant4 user limits %s.",lim.name());
}
else if ( limits ) {
printout(lvl, "Geant4Converter", "++ Volume + Apply LIMITS settings:%-24s to volume %s.",
Markus Frank
committed
lim.name(), _v.name());
Markus Frank
committed
}
G4LogicalVolume* g4vol = nullptr;
if ( _v.hasProperties() && !_v.getProperty(GEANT4_TAG_PLUGIN,"").empty() ) {
Detector* det = const_cast<Detector*>(&m_detDesc);
string plugin = _v.getProperty(GEANT4_TAG_PLUGIN,"");
g4vol = PluginService::Create<G4LogicalVolume*>(plugin, det, _v, solid, medium);
if ( !g4vol ) {
except("G4Cnv::volume["+name+"]","++ FATAL Failed to call plugin to create logical volume.");
}
}
else {
g4vol = new G4LogicalVolume(solid, medium, n, nullptr, nullptr, nullptr);
}
if ( limits ) {
g4vol->SetUserLimits(limits);
}
printout(lvl, "Geant4Converter", "++ Volume + Apply REGION settings: %s to volume %s.",
Markus Frank
committed
reg.name(), _v.name());
g4vol->SetRegion(region);
region->AddRootLogicalVolume(g4vol);
G4VisAttributes* vattr = vis.isValid() ? (G4VisAttributes*)handleVis(vis.name(), vis) : nullptr;
if ( vattr ) {
g4vol->SetVisAttributes(vattr);
Markus Frank
committed
}
info.g4Volumes[volume] = g4vol;
printout(lvl, "Geant4Converter", "++ Volume + %s converted: %p ---> G4: %p", n.c_str(), volume, g4vol);
return nullptr;
/// Dump logical volume in GDML format to output stream
void* Geant4Converter::collectVolume(const string& /* name */, const TGeoVolume* volume) const {
Geant4GeometryInfo& info = data();
Volume _v(volume);
Region reg = _v.region();
LimitSet lim = _v.limitSet();
SensitiveDetector det = _v.sensitiveDetector();
if ( lim.isValid() )
info.limits[lim].insert(volume);
if ( reg.isValid() )
info.regions[reg].insert(volume);
if ( det.isValid() )
info.sensitives[det].insert(volume);
return (void*)volume;
/// Dump volume placement in GDML format to output stream
void* Geant4Converter::handleAssembly(const string& name, const TGeoNode* node) const {
TGeoVolume* mot_vol = node->GetVolume();
PrintLevel lvl = debugVolumes ? ALWAYS : outputLevel;
if ( mot_vol->IsA() != TGeoVolumeAssembly::Class() ) {
return nullptr;
Volume _v(mot_vol);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ AssemblyNode %s not converted [Veto'ed for simulation]",node->GetName());
return nullptr;
Geant4GeometryInfo& info = data();
Geant4AssemblyVolume* g4 = info.g4AssemblyVolumes[node];
if ( g4 ) {
printout(ALWAYS, "Geant4Converter", "+++ Assembly: **** : Re-using existing assembly: %s",node->GetName());
}
if ( !g4 ) {
g4 = new Geant4AssemblyVolume();
for(Int_t i=0; i < mot_vol->GetNdaughters(); ++i) {
TGeoNode* dau = mot_vol->GetNode(i);
TGeoVolume* dau_vol = dau->GetVolume();
TGeoMatrix* tr = dau->GetMatrix();
G4Transform3D transform;
g4Transform(tr, transform);
if ( is_left_handed(tr) ) {
Markus Frank
committed
G4Scale3D scale;
G4Rotate3D rot;
G4Translate3D trans;
transform.getDecomposition(scale, rot, trans);
printout(debugReflections ? ALWAYS : lvl, "Geant4Converter",
"++ Placing reflected ASSEMBLY. dau:%s to mother %s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz(),
Markus Frank
committed
scale.xx(), scale.yy(), scale.zz());
if ( dau_vol->IsA() == TGeoVolumeAssembly::Class() ) {
Geant4GeometryMaps::AssemblyMap::iterator ia = info.g4AssemblyVolumes.find(dau);
if ( ia == info.g4AssemblyVolumes.end() ) {
Markus Frank
committed
printout(FATAL, "Geant4Converter", "+++ Invalid child assembly at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
return nullptr;
Markus Frank
committed
}
g4->placeAssembly(dau, (*ia).second, transform);
printout(lvl, "Geant4Converter", "+++ Assembly: AddPlacedAssembly : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
Geant4GeometryMaps::VolumeMap::iterator iv = info.g4Volumes.find(dau_vol);
if ( iv == info.g4Volumes.end() ) {
printout(FATAL,"Geant4Converter", "+++ Invalid child volume at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
except("Geant4Converter", "+++ Invalid child volume at %s : %d parent: %s child:%s",
__FILE__, __LINE__, name.c_str(), dau->GetName());
Markus Frank
committed
}
g4->placeVolume(dau,(*iv).second, transform);
printout(lvl, "Geant4Converter", "+++ Assembly: AddPlacedVolume : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
dau_vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
info.g4AssemblyVolumes[node] = g4;
/// Dump volume placement in GDML format to output stream
void* Geant4Converter::handlePlacement(const string& name, const TGeoNode* node) const {
Geant4GeometryInfo& info = data();
PrintLevel lvl = debugPlacements ? ALWAYS : outputLevel;
Markus Frank
committed
Geant4GeometryMaps::PlacementMap::const_iterator g4it = info.g4Placements.find(node);
G4VPhysicalVolume* g4 = (g4it == info.g4Placements.end()) ? 0 : (*g4it).second;
TGeoVolume* vol = node->GetVolume();
Volume _v(vol);
if ( _v.testFlagBit(Volume::VETO_SIMU) ) {
printout(lvl, "Geant4Converter", "++ Placement %s not converted [Veto'ed for simulation]",node->GetName());
return nullptr;
TGeoVolume* mot_vol = node->GetMotherVolume();
TGeoMatrix* tr = node->GetMatrix();
except("Geant4Converter",
Markus Frank
committed
"++ Attempt to handle placement without transformation:%p %s of type %s vol:%p",
node, node->GetName(), node->IsA()->GetName(), vol);
except("Geant4Converter", "++ Unknown G4 volume:%p %s of type %s ptr:%p",
Markus Frank
committed
node, node->GetName(), node->IsA()->GetName(), vol);
int copy = node->GetNumber();
bool node_is_reflected = is_left_handed(tr);
bool node_is_assembly = vol->IsA() == TGeoVolumeAssembly::Class();
bool mother_is_assembly = mot_vol ? mot_vol->IsA() == TGeoVolumeAssembly::Class() : false;
G4Transform3D transform;
Markus Frank
committed
Geant4GeometryMaps::VolumeMap::const_iterator volIt = info.g4Volumes.find(mot_vol);
g4Transform(tr, transform);
if ( mother_is_assembly ) {
Markus Frank
committed
//
// Mother is an assembly:
// Nothing to do here, because:
// -- placed volumes were already added before in "handleAssembly"
// -- imprint cannot be made, because this requires a logical volume as a mother
//
printout(lvl, "Geant4Converter", "+++ Assembly: **** : dau:%s "
Markus Frank
committed
"to mother %s Tr:x=%8.3f y=%8.3f z=%8.3f",
vol->GetName(), mot_vol->GetName(),
transform.dx(), transform.dy(), transform.dz());
Markus Frank
committed
}
G4Scale3D scale;
G4Rotate3D rot;
G4Translate3D trans;
transform.getDecomposition(scale, rot, trans);
if ( node_is_assembly ) {
Markus Frank
committed
//
// Node is an assembly:
// Imprint the assembly. The mother MUST already be transformed.
//
printout(lvl, "Geant4Converter", "++ Assembly: makeImprint: dau:%-12s %s in mother %-12s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
node->GetName(), node_is_reflected ? "(REFLECTED)" : "",
Markus Frank
committed
mot_vol ? mot_vol->GetName() : "<unknown>",
transform.dx(), transform.dy(), transform.dz(),
Markus Frank
committed
scale.xx(), scale.yy(), scale.zz());
Markus Frank
committed
Geant4AssemblyVolume* ass = (Geant4AssemblyVolume*)info.g4AssemblyVolumes[node];
Geant4AssemblyVolume::Chain chain;
chain.emplace_back(node);
ass->imprint(*this, node, chain, ass, (*volIt).second, transform, copy, checkOverlaps);
else if ( node != info.manager->GetTopNode() && volIt == info.g4Volumes.end() ) {
Markus Frank
committed
throw logic_error("Geant4Converter: Invalid mother volume found!");
PlacedVolume pv(node);
const auto* pv_data = pv.data();
G4LogicalVolume* g4vol = info.g4Volumes[vol];
G4LogicalVolume* g4mot = info.g4Volumes[mot_vol];
G4PhysicalVolumesPair pvPlaced { nullptr, nullptr };
if ( pv_data && pv_data->params && (pv_data->params->flags&Volume::REPLICATED) ) {
EAxis axis = kUndefined;
double width = 0e0, offset = 0e0;
auto flags = pv_data->params->flags;
auto count = pv_data->params->trafo1D.second;
const auto& start = pv_data->params->start.Translation().Vect();
const auto& delta = pv_data->params->trafo1D.first.Translation().Vect();
if ( flags&Volume::X_axis )
{ axis = kXAxis; width = delta.X(); offset = start.X(); }
else if ( flags&Volume::Y_axis )
{ axis = kYAxis; width = delta.Y(); offset = start.Y(); }
else if ( flags&Volume::Z_axis )
{ axis = kZAxis; width = delta.Z(); offset = start.Z(); }
else
except("Geant4Converter",
"++ Replication around unknown axis is not implemented. flags: %16X", flags);
printout(INFO,"Geant4Converter","++ Replicate: Axis: %ld Count: %ld offset: %f width: %f",
axis, count, offset, width);
auto* g4pv = new G4PVReplica(name, // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume
axis, // its replication axis
count, // Number of replicas
width, // Distance between 2 replicas
offset); // Placement offset in axis direction
pvPlaced = { g4pv, nullptr };
#if 0
pvPlaced =
G4ReflectionFactory::Instance()->Replicate(name, // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume
axis, // its replication axis
count, // Number of replicas
width, // Distance between 2 replicas
offset); // Placement offset in axis direction
/// Update replica list to avoid additional conversions...
auto* g4pv = pvPlaced.second ? pvPlaced.second : pvPlaced.first;
for( auto& handle : pv_data->params->placements )
info.g4Placements[handle.ptr()] = g4pv;
}
else if ( pv_data && pv_data->params ) {
auto* g4par = new Geant4PlacementParameterisation(pv);
auto* g4pv = new G4PVParameterised(name, // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume
g4par->axis(), // its replication axis
g4par->count(), // Number of replicas
g4par); // G4 parametrization
pvPlaced = { g4pv, nullptr };
/// Update replica list to avoid additional conversions...
for( auto& handle : pv_data->params->placements )
info.g4Placements[handle.ptr()] = g4pv;
}
else {
pvPlaced =
G4ReflectionFactory::Instance()->Place(transform, // no rotation
name, // its name
g4vol, // its logical volume
g4mot, // its mother (logical) volume
false, // no boolean operations
copy, // its copy number
checkOverlaps);
}
printout(debugReflections||debugPlacements ? ALWAYS : lvl, "Geant4Converter",
Markus Frank
committed
"++ Place %svolume %-12s in mother %-12s "
"Tr:x=%8.1f y=%8.1f z=%8.1f Scale:x=%4.2f y=%4.2f z=%4.2f",
node_is_reflected ? "REFLECTED " : "", _v.name(),
mot_vol ? mot_vol->GetName() : "<unknown>",
transform.dx(), transform.dy(), transform.dz(),
scale.xx(), scale.yy(), scale.zz());
// First 2 cases can be combined.
// Leave them separated for debugging G4ReflectionFactory for now...
if ( node_is_reflected && !pvPlaced.second )
return info.g4Placements[node] = pvPlaced.first;
else if ( !node_is_reflected && !pvPlaced.second )
return info.g4Placements[node] = pvPlaced.first;
// Now deal with valid pvPlaced.second ...
if ( node_is_reflected )
return info.g4Placements[node] = pvPlaced.first;
else if ( !node_is_reflected )
return info.g4Placements[node] = pvPlaced.first;
g4 = pvPlaced.second ? pvPlaced.second : pvPlaced.first;
info.g4Placements[node] = g4;
printout(ERROR, "Geant4Converter", "++ DEAD code. Should not end up here!");
/// Convert the geometry type region into the corresponding Geant4 object(s).
void* Geant4Converter::handleRegion(Region region, const set<const TGeoVolume*>& /* volumes */) const {
G4Region* g4 = data().g4Regions[region];
Markus Frank
committed
PrintLevel lvl = debugRegions ? ALWAYS : outputLevel;
Region r = region;
Markus Frank
committed
g4 = new G4Region(r.name());
// create region info with storeSecondaries flag
Andre Sailer
committed
if( not r.wasThresholdSet() and r.storeSecondaries() ) {
throw runtime_error("G4Region: StoreSecondaries is True, but no explicit threshold set:");
}
printout(lvl, "Geant4Converter", "++ Setting up region: %s", r.name());
G4UserRegionInformation* info = new G4UserRegionInformation();
info->region = r;
info->threshold = r.threshold()*CLHEP::MeV/units::MeV;
info->storeSecondaries = r.storeSecondaries();
g4->SetUserInformation(info);
printout(lvl, "Geant4Converter", "++ Converted region settings of:%s.", r.name());
vector < string > &limits = r.limits();
G4ProductionCuts* cuts = 0;
// set production cut
if( not r.useDefaultCut() ) {
cuts = new G4ProductionCuts();
cuts->SetProductionCut(r.cut()*CLHEP::mm/units::mm);
printout(lvl, "Geant4Converter", "++ %s: Using default cut: %f [mm]",
r.name(), r.cut()*CLHEP::mm/units::mm);
}
for( const auto& nam : limits ) {
const LimitSet::Set& cts = ls.cuts();
for (const auto& c : cts ) {
if ( c.particles == "*" ) pid = -1;
else if ( c.particles == "e-" ) pid = idxG4ElectronCut;
else if ( c.particles == "e+" ) pid = idxG4PositronCut;
else if ( c.particles == "e[+-]" ) pid = -idxG4PositronCut-idxG4ElectronCut;
else if ( c.particles == "e[-+]" ) pid = -idxG4PositronCut-idxG4ElectronCut;
else if ( c.particles == "gamma" ) pid = idxG4GammaCut;
else if ( c.particles == "proton" ) pid = idxG4ProtonCut;
else throw runtime_error("G4Region: Invalid production cut particle-type:" + c.particles);
if ( !cuts ) cuts = new G4ProductionCuts();
if ( pid == -(idxG4PositronCut+idxG4ElectronCut) ) {
cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, idxG4PositronCut);
cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, idxG4ElectronCut);
}
else {
cuts->SetProductionCut(c.value*CLHEP::mm/units::mm, pid);
}
printout(lvl, "Geant4Converter", "++ %s: Set cut [%s/%d] = %f [mm]",
r.name(), c.particles.c_str(), pid, c.value*CLHEP::mm/units::mm);
}
const auto& lm = data().g4Limits;
for (const auto& j : lm ) {
if (nam == j.first->GetName()) {
g4->SetUserLimits(j.second);
printout(lvl, "Geant4Converter", "++ %s: Set limits %s to region type %s",
r.name(), nam.c_str(), j.second->GetType().c_str());
found = true;
break;
}
}
if ( found ) {
throw runtime_error("G4Region: Failed to resolve user limitset:" + nam);
/// Assign cuts to region if they were created
if ( cuts ) g4->SetProductionCuts(cuts);
data().g4Regions[region] = g4;
}
return g4;
}
/// Convert the geometry type LimitSet into the corresponding Geant4 object(s).
void* Geant4Converter::handleLimitSet(LimitSet limitset, const set<const TGeoVolume*>& /* volumes */) const {
G4UserLimits* g4 = data().g4Limits[limitset];
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
struct LimitPrint {
const LimitSet& ls;
LimitPrint(const LimitSet& lset) : ls(lset) {}
const LimitPrint& operator()(const std::string& pref, const Geant4UserLimits::Handler& h) const {
if ( !h.particleLimits.empty() ) {
printout(ALWAYS,"Geant4Converter",
"+++ LimitSet: Limit %s.%s applied for particles:",ls.name(), pref.c_str());
for(const auto& p : h.particleLimits)
printout(ALWAYS,"Geant4Converter","+++ LimitSet: Particle type: %-18s PDG: %-6d : %f",
p.first->GetParticleName().c_str(), p.first->GetPDGEncoding(), p.second);
}
else {
printout(ALWAYS,"Geant4Converter",
"+++ LimitSet: Limit %s.%s NOT APPLIED.",ls.name(), pref.c_str());
}
return *this;
}
};
Geant4UserLimits* limits = new Geant4UserLimits(limitset);
g4 = limits;
if ( debugRegions ) {
LimitPrint print(limitset);
print("maxTime", limits->maxTime)
("minEKine", limits->minEKine)
("minRange", limits->minRange)
("maxStepLength", limits->maxStepLength)
("maxTrackLength",limits->maxTrackLength);
}
data().g4Limits[limitset] = g4;
}
return g4;
}
/// Convert the geometry visualisation attributes to the corresponding Geant4 object(s).
void* Geant4Converter::handleVis(const string& /* name */, VisAttr attr) const {
Geant4GeometryInfo& info = data();
G4VisAttributes* g4 = info.g4Vis[attr];
if ( !g4 ) {
int style = attr.lineStyle();
attr.rgb(red, green, blue);
g4 = new G4VisAttributes(attr.visible(), G4Colour(red, green, blue, attr.alpha()));
//g4->SetLineWidth(attr->GetLineWidth());
g4->SetDaughtersInvisible(!attr.showDaughters());
if ( style == VisAttr::SOLID ) {
g4->SetLineStyle(G4VisAttributes::unbroken);
g4->SetForceWireframe(false);
g4->SetForceSolid(true);
}
else if ( style == VisAttr::WIREFRAME || style == VisAttr::DASHED ) {
g4->SetLineStyle(G4VisAttributes::dashed);
g4->SetForceSolid(false);
g4->SetForceWireframe(true);
}
}
return g4;
}
/// Handle the geant 4 specific properties
void Geant4Converter::handleProperties(Detector::Properties& prp) const {
map < string, string > processors;
static int s_idd = 9999999;
for( const auto& [nam, vals] : prp ) {
if ( nam.substr(0, 6) == "geant4" ) {
auto id_it = vals.find("id");
string id = (id_it == vals.end()) ? _toString(++s_idd,"%d") : (*id_it).second;
processors.emplace(id, nam);
for( const auto& p : processors ) {
const Detector::PropertyValues& vals = prp[p.second];
string type = vals.find("type")->second;
string tag = type + "_Geant4_action";
Detector* det = const_cast<Detector*>(&m_detDesc);
long res = PluginService::Create<long>(tag, det, hdlr, &vals);
if ( 0 == res ) {
throw runtime_error("Failed to locate plugin to interprete files of type"
Markus Frank
committed
" \"" + tag + "\" - no factory:" + type);
res = *(long*)res;
if ( res != 1 ) {
throw runtime_error("Failed to invoke the plugin " + tag + " of type " + type);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "+++++ Executed Successfully Geant4 setup module *%s*.", type.c_str());
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Convert the geometry type material into the corresponding Geant4 object(s).
void* Geant4Converter::handleMaterialProperties(TObject* mtx) const {
Geant4GeometryInfo& info = data();
TGDMLMatrix* matrix = (TGDMLMatrix*)mtx;
const char* cptr = ::strstr(matrix->GetName(), GEANT4_TAG_IGNORE);
Geant4GeometryInfo::PropertyVector* g4 = info.g4OpticalProperties[matrix];
if ( 0 != cptr ) { // Check if the property should not be passed to Geant4
printout(INFO,"Geant4MaterialProperties","++ Ignore property %s [%s].",
Markus Frank
committed
matrix->GetName(), matrix->GetTitle());
return nullptr;
}
cptr = ::strstr(matrix->GetTitle(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) { // Check if the property should not be passed to Geant4
printout(INFO,"Geant4MaterialProperties","++ Ignore property %s [%s].",
Markus Frank
committed
matrix->GetName(), matrix->GetTitle());
return nullptr;
}
if ( !g4 ) {
Markus Frank
committed
PrintLevel lvl = debugMaterials ? ALWAYS : outputLevel;
g4 = new Geant4GeometryInfo::PropertyVector();
std::size_t rows = matrix->GetRows();
g4->name = matrix->GetName();
g4->title = matrix->GetTitle();
g4->bins.reserve(rows);
g4->values.reserve(rows);
for( std::size_t i=0; i<rows; ++i ) {
g4->bins.emplace_back(matrix->Get(i,0) /* *CLHEP::eV/units::eV */);
g4->values.emplace_back(matrix->Get(i,1));
printout(lvl, "Geant4Converter",
Markus Frank
committed
"++ Successfully converted material property:%s : %s [%ld rows]",
matrix->GetName(), matrix->GetTitle(), rows);
info.g4OpticalProperties[matrix] = g4;
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
}
return g4;
}
static G4OpticalSurfaceFinish geant4_surface_finish(TGeoOpticalSurface::ESurfaceFinish f) {
#define TO_G4_FINISH(x) case TGeoOpticalSurface::kF##x : return x;
switch(f) {
TO_G4_FINISH(polished); // smooth perfectly polished surface
TO_G4_FINISH(polishedfrontpainted); // smooth top-layer (front) paint
TO_G4_FINISH(polishedbackpainted); // same is 'polished' but with a back-paint
TO_G4_FINISH(ground); // rough surface
TO_G4_FINISH(groundfrontpainted); // rough top-layer (front) paint
TO_G4_FINISH(groundbackpainted); // same as 'ground' but with a back-paint
TO_G4_FINISH(polishedlumirrorair); // mechanically polished surface, with lumirror
TO_G4_FINISH(polishedlumirrorglue); // mechanically polished surface, with lumirror & meltmount
TO_G4_FINISH(polishedair); // mechanically polished surface
TO_G4_FINISH(polishedteflonair); // mechanically polished surface, with teflon
TO_G4_FINISH(polishedtioair); // mechanically polished surface, with tio paint
TO_G4_FINISH(polishedtyvekair); // mechanically polished surface, with tyvek
TO_G4_FINISH(polishedvm2000air); // mechanically polished surface, with esr film
TO_G4_FINISH(polishedvm2000glue); // mechanically polished surface, with esr film & meltmount
TO_G4_FINISH(etchedlumirrorair); // chemically etched surface, with lumirror
TO_G4_FINISH(etchedlumirrorglue); // chemically etched surface, with lumirror & meltmount
TO_G4_FINISH(etchedair); // chemically etched surface
TO_G4_FINISH(etchedteflonair); // chemically etched surface, with teflon
TO_G4_FINISH(etchedtioair); // chemically etched surface, with tio paint
TO_G4_FINISH(etchedtyvekair); // chemically etched surface, with tyvek
TO_G4_FINISH(etchedvm2000air); // chemically etched surface, with esr film
TO_G4_FINISH(etchedvm2000glue); // chemically etched surface, with esr film & meltmount
TO_G4_FINISH(groundlumirrorair); // rough-cut surface, with lumirror
TO_G4_FINISH(groundlumirrorglue); // rough-cut surface, with lumirror & meltmount
TO_G4_FINISH(groundair); // rough-cut surface
TO_G4_FINISH(groundteflonair); // rough-cut surface, with teflon
TO_G4_FINISH(groundtioair); // rough-cut surface, with tio paint
TO_G4_FINISH(groundtyvekair); // rough-cut surface, with tyvek
TO_G4_FINISH(groundvm2000air); // rough-cut surface, with esr film
TO_G4_FINISH(groundvm2000glue); // rough-cut surface, with esr film & meltmount
// for DAVIS model
TO_G4_FINISH(Rough_LUT); // rough surface
TO_G4_FINISH(RoughTeflon_LUT); // rough surface wrapped in Teflon tape
TO_G4_FINISH(RoughESR_LUT); // rough surface wrapped with ESR
TO_G4_FINISH(RoughESRGrease_LUT); // rough surface wrapped with ESR and coupled with opical grease
TO_G4_FINISH(Polished_LUT); // polished surface
TO_G4_FINISH(PolishedTeflon_LUT); // polished surface wrapped in Teflon tape
TO_G4_FINISH(PolishedESR_LUT); // polished surface wrapped with ESR
TO_G4_FINISH(PolishedESRGrease_LUT); // polished surface wrapped with ESR and coupled with opical grease
TO_G4_FINISH(Detector_LUT); // polished surface with optical grease
default:
printout(ERROR,"Geant4Surfaces","++ Unknown finish style: %d [%s]. Assume polished!",
int(f), TGeoOpticalSurface::FinishToString(f));
return polished;
}
#undef TO_G4_FINISH
}
static G4SurfaceType geant4_surface_type(TGeoOpticalSurface::ESurfaceType t) {
#define TO_G4_TYPE(x) case TGeoOpticalSurface::kT##x : return x;
switch(t) {
TO_G4_TYPE(dielectric_metal); // dielectric-metal interface
TO_G4_TYPE(dielectric_dielectric); // dielectric-dielectric interface
TO_G4_TYPE(dielectric_LUT); // dielectric-Look-Up-Table interface
TO_G4_TYPE(dielectric_LUTDAVIS); // dielectric-Look-Up-Table DAVIS interface
TO_G4_TYPE(dielectric_dichroic); // dichroic filter interface
TO_G4_TYPE(firsov); // for Firsov Process
TO_G4_TYPE(x_ray); // for x-ray mirror process
default:
printout(ERROR,"Geant4Surfaces","++ Unknown surface type: %d [%s]. Assume dielectric_metal!",
int(t), TGeoOpticalSurface::TypeToString(t));
return dielectric_metal;
}
#undef TO_G4_TYPE
}
static G4OpticalSurfaceModel geant4_surface_model(TGeoOpticalSurface::ESurfaceModel surfMod) {
#define TO_G4_MODEL(x) case TGeoOpticalSurface::kM##x : return x;
TO_G4_MODEL(glisur); // original GEANT3 model
TO_G4_MODEL(unified); // UNIFIED model
TO_G4_MODEL(LUT); // Look-Up-Table model
TO_G4_MODEL(DAVIS); // DAVIS model
TO_G4_MODEL(dichroic); // dichroic filter
default:
printout(ERROR,"Geant4Surfaces","++ Unknown surface model: %d [%s]. Assume glisur!",
int(surfMod), TGeoOpticalSurface::ModelToString(surfMod));
return glisur;
}
#undef TO_G4_MODEL
}
/// Convert the optical surface to Geant4
void* Geant4Converter::handleOpticalSurface(TObject* surface) const {
TGeoOpticalSurface* optSurf = (TGeoOpticalSurface*)surface;
Geant4GeometryInfo& info = data();
G4OpticalSurface* g4 = info.g4OpticalSurfaces[optSurf];
G4SurfaceType type = geant4_surface_type(optSurf->GetType());
G4OpticalSurfaceModel model = geant4_surface_model(optSurf->GetModel());
G4OpticalSurfaceFinish finish = geant4_surface_finish(optSurf->GetFinish());
g4 = new G4OpticalSurface(optSurf->GetName(), model, finish, type, optSurf->GetValue());
g4->SetSigmaAlpha(optSurf->GetSigmaAlpha());
// not implemented: g4->SetPolish(s->GetPolish());
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created OpticalSurface: %-18s type:%s model:%s finish:%s",
optSurf->GetName(),
TGeoOpticalSurface::TypeToString(optSurf->GetType()),
TGeoOpticalSurface::ModelToString(optSurf->GetModel()),
TGeoOpticalSurface::FinishToString(optSurf->GetFinish()));
G4MaterialPropertiesTable* tab = 0;
Markus Frank
committed
for(TObject* obj = it.Next(); obj; obj = it.Next()) {
Markus Frank
committed
string exc_str;
TNamed* named = (TNamed*)obj;
TGDMLMatrix* matrix = info.manager->GetGDMLMatrix(named->GetTitle());
const char* cptr = ::strstr(matrix->GetName(), GEANT4_TAG_IGNORE);
if ( 0 != cptr ) // Check if the property should not be passed to Geant4
Markus Frank
committed
continue;
if ( 0 == tab ) {
tab = new G4MaterialPropertiesTable();
g4->SetMaterialPropertiesTable(tab);
}
Geant4GeometryInfo::PropertyVector* v =
(Geant4GeometryInfo::PropertyVector*)handleMaterialProperties(matrix);
if ( !v ) { // Error!
except("Geant4OpticalSurface","++ Failed to convert opt.surface %s. Property table %s is not defined!",
optSurf->GetName(), named->GetTitle());
}
Markus Frank
committed
int idx = -1;
try {
idx = tab->GetPropertyIndex(named->GetName());
}
catch(const std::exception& e) {
exc_str = e.what();
idx = -1;
}
catch(...) {
idx = -1;
}
Markus Frank
committed
printout(ERROR, "Geant4Converter",
"++ UNKNOWN Geant4 Property: %-20s %s [IGNORED]",
exc_str.c_str(), named->GetName());
// We need to convert the property from TGeo units to Geant4 units
auto conv = g4PropertyConversion(idx);
vector<double> bins(v->bins), vals(v->values);
for(std::size_t i=0, count=v->bins.size(); i<count; ++i)
bins[i] *= conv.first, vals[i] *= conv.second;
G4MaterialPropertyVector* vec = new G4MaterialPropertyVector(&bins[0], &vals[0], bins.size());
tab->AddProperty(named->GetName(), vec);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Property: %-20s [%ld x %ld] --> %s",
named->GetName(), matrix->GetRows(), matrix->GetCols(), named->GetTitle());
for(std::size_t i=0, count=v->bins.size(); i<count; ++i)
printout(debugSurfaces ? ALWAYS : DEBUG, named->GetName(),
" Geant4: %8.3g [MeV] TGeo: %8.3g [GeV] Conversion: %8.3g",
bins[i], v->bins[i], conv.first);
}
return g4;
}
/// Convert the skin surface to Geant4
void* Geant4Converter::handleSkinSurface(TObject* surface) const {
TGeoSkinSurface* surf = (TGeoSkinSurface*)surface;
Geant4GeometryInfo& info = data();
G4LogicalSkinSurface* g4 = info.g4SkinSurfaces[surf];
G4OpticalSurface* optSurf = info.g4OpticalSurfaces[OpticalSurface(surf->GetSurface())];
G4LogicalVolume* v = info.g4Volumes[surf->GetVolume()];
g4 = new G4LogicalSkinSurface(surf->GetName(), v, optSurf);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created SkinSurface: %-18s optical:%s",
surf->GetName(), surf->GetSurface()->GetName());
info.g4SkinSurfaces[surf] = g4;
}
return g4;
}
/// Convert the border surface to Geant4
void* Geant4Converter::handleBorderSurface(TObject* surface) const {
TGeoBorderSurface* surf = (TGeoBorderSurface*)surface;
Geant4GeometryInfo& info = data();
G4LogicalBorderSurface* g4 = info.g4BorderSurfaces[surf];
G4OpticalSurface* optSurf = info.g4OpticalSurfaces[OpticalSurface(surf->GetSurface())];
G4VPhysicalVolume* n1 = info.g4Placements[surf->GetNode1()];
G4VPhysicalVolume* n2 = info.g4Placements[surf->GetNode2()];
g4 = new G4LogicalBorderSurface(surf->GetName(), n1, n2, optSurf);
Markus Frank
committed
printout(debugSurfaces ? ALWAYS : DEBUG, "Geant4Converter",
"++ Created BorderSurface: %-18s optical:%s",
surf->GetName(), surf->GetSurface()->GetName());
info.g4BorderSurfaces[surf] = g4;
}
return g4;
}
#endif
/// Convert the geometry type SensitiveDetector into the corresponding Geant4 object(s).
Markus Frank
committed
void Geant4Converter::printSensitive(SensitiveDetector sens_det, const set<const TGeoVolume*>& /* volumes */) const {
Geant4GeometryInfo& info = data();
set<const TGeoVolume*>& volset = info.sensitives[sens_det];
SensitiveDetector sd = sens_det;
Markus Frank
committed
stringstream str;
printout(INFO, "Geant4Converter", "++ SensitiveDetector: %-18s %-20s Hits:%-16s", sd.name(), ("[" + sd.type() + "]").c_str(),
Markus Frank
committed
sd.hitsCollection().c_str());
str << " | " << "Cutoff:" << setw(6) << left << sd.energyCutoff() << setw(5) << right << volset.size()
<< " volumes ";
if (sd.region().isValid())
str << " Region:" << setw(12) << left << sd.region().name();
if (sd.limits().isValid())
str << " Limits:" << setw(12) << left << sd.limits().name();
Markus Frank
committed
str << ".";
printout(INFO, "Geant4Converter", str.str().c_str());
for (const auto i : volset ) {
map<Volume, G4LogicalVolume*>::iterator v = info.g4Volumes.find(i);
Markus Frank
committed
str.str("");
str << " | " << "Volume:" << setw(24) << left << vol->GetName() << " "
<< vol->GetNoDaughters() << " daughters.";
Markus Frank
committed
printout(INFO, "Geant4Converter", str.str().c_str());
Markus Frank
committed
string printSolid(G4VSolid* sol) {
stringstream str;
if (typeid(*sol) == typeid(G4Box)) {
const G4Box* b = (G4Box*) sol;
Markus Frank
committed
str << "++ Box: x=" << b->GetXHalfLength() << " y=" << b->GetYHalfLength() << " z=" << b->GetZHalfLength();
else if (typeid(*sol) == typeid(G4Tubs)) {
const G4Tubs* t = (const G4Tubs*) sol;
str << " Tubs: Ri=" << t->GetInnerRadius() << " Ra=" << t->GetOuterRadius() << " z/2=" << t->GetZHalfLength() << " Phi="
<< t->GetStartPhiAngle() << "..." << t->GetDeltaPhiAngle();
Markus Frank
committed
return str.str();
}
/// Print G4 placement
void* Geant4Converter::printPlacement(const string& name, const TGeoNode* node) const {
Geant4GeometryInfo& info = data();
G4VPhysicalVolume* g4 = info.g4Placements[node];
G4LogicalVolume* vol = info.g4Volumes[node->GetVolume()];
G4LogicalVolume* mot = info.g4Volumes[node->GetMotherVolume()];
G4VSolid* sol = vol->GetSolid();
G4ThreeVector tr = g4->GetObjectTranslation();
G4VSensitiveDetector* sd = vol->GetSensitiveDetector();
Markus Frank
committed
stringstream str;
str << "G4Cnv::placement: + " << name << " No:" << node->GetNumber() << " Vol:" << vol->GetName() << " Solid:"
<< sol->GetName();
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
Markus Frank
committed
str.str("");
str << " |" << " Loc: x=" << tr.x() << " y=" << tr.y() << " z=" << tr.z();
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
printout(outputLevel, "G4Placement", printSolid(sol).c_str());
Markus Frank
committed
str.str("");
str << " |" << " Ndau:" << vol->GetNoDaughters() << " physvols." << " Mat:" << vol->GetMaterial()->GetName()
<< " Mother:" << (char*) (mot ? mot->GetName().c_str() : "---");
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
Markus Frank
committed
str.str("");
Markus Frank
committed
printout(outputLevel, "G4Placement", str.str().c_str());
namespace {
template <typename O, typename C, typename F> void handleRefs(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
//(o->*pmf)((*i)->GetName(), *i);
(o->*pmf)("", *i);
}
template <typename O, typename C, typename F> void handle(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
(o->*pmf)((*i)->GetName(), *i);
}
template <typename O, typename F> void handleArray(const O* o, const TObjArray* c, F pmf) {
TObjArrayIter arr(c);
for(TObject* i = arr.Next(); i; i=arr.Next())
(o->*pmf)(i);
}
template <typename O, typename C, typename F> void handleMap(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i)
(o->*pmf)((*i).first, (*i).second);
}
template <typename O, typename C, typename F> void handleRMap(const O* o, const C& c, F pmf) {
for (typename C::const_reverse_iterator i = c.rbegin(); i != c.rend(); ++i) {
//cout << "Handle RMAP [ " << (*i).first << " ]" << endl;
handle(o, (*i).second, pmf);
}
template <typename O, typename C, typename F> void handleRMap_(const O* o, const C& c, F pmf) {
for (typename C::const_iterator i = c.begin(); i != c.end(); ++i) {
const auto& cc = (*i).second;
for (const auto& j : cc) {
Markus Frank
committed
(o->*pmf)(j);
Markus Frank
committed
Geant4Converter& Geant4Converter::create(DetElement top) {
Geant4GeometryInfo& geo = this->init();
geo.manager = &wrld.detectorDescription().manager();
Markus Frank
committed
collect(top, geo);
Markus Frank
committed
checkOverlaps = false;
// We do not have to handle defines etc.
// All positions and the like are not really named.
// Hence, start creating the G4 objects for materials, solids and log volumes.
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
handleArray(this, geo.manager->GetListOfGDMLMatrices(), &Geant4Converter::handleMaterialProperties);
handleArray(this, geo.manager->GetListOfOpticalSurfaces(), &Geant4Converter::handleOpticalSurface);
#endif
handle(this, geo.volumes, &Geant4Converter::collectVolume);
handle(this, geo.solids, &Geant4Converter::handleSolid);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld solids.", geo.solids.size());
handleRefs(this, geo.vis, &Geant4Converter::handleVis);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld visualization attributes.", geo.vis.size());
handleMap(this, geo.limits, &Geant4Converter::handleLimitSet);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld limit sets.", geo.limits.size());
handleMap(this, geo.regions, &Geant4Converter::handleRegion);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld regions.", geo.regions.size());
handle(this, geo.volumes, &Geant4Converter::handleVolume);
Markus Frank
committed
printout(outputLevel, "Geant4Converter", "++ Handled %ld volumes.", geo.volumes.size());
handleRMap(this, *m_data, &Geant4Converter::handleAssembly);
// Now place all this stuff appropriately
handleRMap(this, *m_data, &Geant4Converter::handlePlacement);
#if ROOT_VERSION_CODE >= ROOT_VERSION(6,17,0)
/// Handle concrete surfaces
handleArray(this, geo.manager->GetListOfSkinSurfaces(), &Geant4Converter::handleSkinSurface);
handleArray(this, geo.manager->GetListOfBorderSurfaces(), &Geant4Converter::handleBorderSurface);
#endif
//==================== Fields
Markus Frank
committed
if ( printSensitives ) {
handleMap(this, geo.sensitives, &Geant4Converter::printSensitive);
}
if ( printPlacements ) {
handleRMap(this, *m_data, &Geant4Converter::printPlacement);
}
geo.setWorld(top.placement().ptr());
geo.valid = true;
printout(INFO, "Geant4Converter", "+++ Successfully converted geometry to Geant4.");
Markus Frank
committed
return *this;